Nonparametric drift estimation for i.i.d. paths of stochastic differential equations

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2020-12-01 DOI:10.1214/19-aos1933
F. Comte, V. Genon-Catalot
{"title":"Nonparametric drift estimation for i.i.d. paths of stochastic differential equations","authors":"F. Comte, V. Genon-Catalot","doi":"10.1214/19-aos1933","DOIUrl":null,"url":null,"abstract":"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1933","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 22

Abstract

By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机微分方程i.i.d.路径的非参数漂移估计
Fabienne Comte*,Valentine Genon-Catalot*,巴黎大学,MAP5,CNRS,F-75006,法国*我们考虑N个独立随机过程(Xi(t),t∈[0,t]),i=1,N,由一维随机微分方程定义,该方程在整个时间间隔[0,T]内连续观测,其中T为x。我们研究了R的给定子集a上漂移函数的非参数估计。在L(a,dx)的nite维子集上定义了投影估计。我们强调集合A可以是紧致的,也可以是非紧致的,并且扩散系数可以是有界的。提出了一种选择投影空间尺寸的数据驱动程序,其中尺寸是在随机模型集合中选择的。获得了风险的上限,讨论了假设,并报告了模拟实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1