Weak Lensing for Precision Cosmology

IF 26.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Astronomy and Astrophysics Pub Date : 2017-10-09 DOI:10.1146/annurev-astro-081817-051928
R. Mandelbaum
{"title":"Weak Lensing for Precision Cosmology","authors":"R. Mandelbaum","doi":"10.1146/annurev-astro-081817-051928","DOIUrl":null,"url":null,"abstract":"Weak gravitational lensing, the deflection of light by mass, is one of the best tools to constrain the growth of cosmic structure with time and reveal the nature of dark energy. I discuss the sources of systematic uncertainty in weak lensing measurements and their theoretical interpretation, including our current understanding and other options for future improvement. These include long-standing concerns such as the estimation of coherent shears from galaxy images or redshift distributions of galaxies selected on the basis of photometric redshifts, along with systematic uncertainties that have received less attention to date because they are subdominant contributors to the error budget in current surveys. I also discuss methods for automated systematics detection using survey data of the 2020s. The goal of this review is to describe the current state of the field and what must be done so that if weak lensing measurements lead toward surprising conclusions about key questions such as the nature of dark energy, those conclusions will be credible.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-081817-051928","citationCount":"168","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-astro-081817-051928","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 168

Abstract

Weak gravitational lensing, the deflection of light by mass, is one of the best tools to constrain the growth of cosmic structure with time and reveal the nature of dark energy. I discuss the sources of systematic uncertainty in weak lensing measurements and their theoretical interpretation, including our current understanding and other options for future improvement. These include long-standing concerns such as the estimation of coherent shears from galaxy images or redshift distributions of galaxies selected on the basis of photometric redshifts, along with systematic uncertainties that have received less attention to date because they are subdominant contributors to the error budget in current surveys. I also discuss methods for automated systematics detection using survey data of the 2020s. The goal of this review is to describe the current state of the field and what must be done so that if weak lensing measurements lead toward surprising conclusions about key questions such as the nature of dark energy, those conclusions will be credible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确宇宙学的弱透镜
弱引力透镜效应,即光受质量的偏转,是约束宇宙结构随时间增长和揭示暗能量本质的最佳工具之一。我讨论了弱透镜测量中系统不确定性的来源及其理论解释,包括我们目前的理解和未来改进的其他选择。其中包括长期存在的问题,如从星系图像中估计相干剪切,或根据光度红移选择星系的红移分布,以及迄今为止受到较少关注的系统不确定性,因为它们是当前调查中误差预算的次要贡献者。我还讨论了使用20世纪20年代的调查数据进行自动化系统检测的方法。这篇综述的目的是描述该领域的现状,以及必须做些什么,以便在弱透镜测量得出关于暗能量性质等关键问题的惊人结论时,这些结论将是可信的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
54.80
自引率
0.60%
发文量
14
期刊介绍: The Annual Review of Astronomy and Astrophysics is covers significant developments in the field of astronomy and astrophysics including:The Sun,Solar system and extrasolar planets,Stars,Interstellar medium,Galaxy and galaxies,Active galactic nuclei,Cosmology,Instrumentation and techniques, History of the development of new areas of research.
期刊最新文献
The Star–Planet Composition Connection Solar Flare Spectroscopy Theory and Observation of Winds from Star-Forming Galaxies A Tale of Many H0 Molecular Gas and the Star-Formation Process on Cloud Scales in Nearby Galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1