{"title":"Introducing a multi-stakeholder perspective on opacity, transparency and strategies to reduce opacity in algorithm-based human resource management","authors":"Markus Langer, Cornelius J. König","doi":"10.1016/j.hrmr.2021.100881","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Intelligence and algorithmic technologies support or even automate a large variety of human resource management (HRM) activities. This affects a range of stakeholders with different, partially conflicting perspectives on the opacity and transparency of algorithm-based HRM. In this paper, we explain why opacity is a key characteristic of algorithm-based HRM, describe reasons for opaque algorithm-based HRM, and highlight the implications of opacity from the perspective of the main stakeholders involved (users, affected people, deployers, developers, and regulators). We also review strategies to reduce opacity and promote transparency of algorithm-based HRM (technical solutions, education and training, regulation and guidelines), and emphasize that opacity and transparency in algorithm-based HRM can simultaneously have beneficial and detrimental consequences that warrant taking a multi-stakeholder view when considering these consequences. We conclude with a research agenda highlighting stakeholders' interests regarding opacity, strategies to reduce opacity, and consequences of opacity and transparency in algorithm-based HRM.</p></div>","PeriodicalId":48145,"journal":{"name":"Human Resource Management Review","volume":"33 1","pages":"Article 100881"},"PeriodicalIF":8.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Resource Management Review","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053482221000607","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 8
Abstract
Artificial Intelligence and algorithmic technologies support or even automate a large variety of human resource management (HRM) activities. This affects a range of stakeholders with different, partially conflicting perspectives on the opacity and transparency of algorithm-based HRM. In this paper, we explain why opacity is a key characteristic of algorithm-based HRM, describe reasons for opaque algorithm-based HRM, and highlight the implications of opacity from the perspective of the main stakeholders involved (users, affected people, deployers, developers, and regulators). We also review strategies to reduce opacity and promote transparency of algorithm-based HRM (technical solutions, education and training, regulation and guidelines), and emphasize that opacity and transparency in algorithm-based HRM can simultaneously have beneficial and detrimental consequences that warrant taking a multi-stakeholder view when considering these consequences. We conclude with a research agenda highlighting stakeholders' interests regarding opacity, strategies to reduce opacity, and consequences of opacity and transparency in algorithm-based HRM.
期刊介绍:
The Human Resource Management Review (HRMR) is a quarterly academic journal dedicated to publishing scholarly conceptual and theoretical articles in the field of human resource management and related disciplines such as industrial/organizational psychology, human capital, labor relations, and organizational behavior. HRMR encourages manuscripts that address micro-, macro-, or multi-level phenomena concerning the function and processes of human resource management. The journal publishes articles that offer fresh insights to inspire future theory development and empirical research. Critical evaluations of existing concepts, theories, models, and frameworks are also encouraged, as well as quantitative meta-analytical reviews that contribute to conceptual and theoretical understanding.
Subject areas appropriate for HRMR include (but are not limited to) Strategic Human Resource Management, International Human Resource Management, the nature and role of the human resource function in organizations, any specific Human Resource function or activity (e.g., Job Analysis, Job Design, Workforce Planning, Recruitment, Selection and Placement, Performance and Talent Management, Reward Systems, Training, Development, Careers, Safety and Health, Diversity, Fairness, Discrimination, Employment Law, Employee Relations, Labor Relations, Workforce Metrics, HR Analytics, HRM and Technology, Social issues and HRM, Separation and Retention), topics that influence or are influenced by human resource management activities (e.g., Climate, Culture, Change, Leadership and Power, Groups and Teams, Employee Attitudes and Behavior, Individual, team, and/or Organizational Performance), and HRM Research Methods.