{"title":"Guidelines to select suitable parameters for contour method stress measurements","authors":"N. Naveed","doi":"10.24423/AOM.3378","DOIUrl":null,"url":null,"abstract":"The contour method is one of the promising techniques for the measurement of residual stresses in engineering components. In this method, the cut surfaces deform, owing to the relaxation of residual stresses. The deformations of the two cut surfaces are then measured and used to back calculate the 2-dimensional map of original residual stresses normal to the plane of the cut. Thus, it involves four main steps; specimen cutting, surface contour measurement, data analysis and finite element simulation. These steps should perform in a manner that they do not change the underlying features of surface deformation especially where the residual stress distribution varies over short distances. Therefore, to carefully implement these steps, it is important to select appropriate parameters such as surface deformation measurement spacing, data smoothing parameters (‘knot spacing’ for example cubic spline smoothing) and finite element mesh size. This research covers an investigation of these important parameters. A simple approach for choosing initial parameters is developed based on an idealised cosine displacement function (giving a self-equilibrated one-dimensional residual stress profile). In this research, guidelines are proposed to help the measurer to select the most suitable choice of these parameters based on the estimated wavelength of the residual stress field.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"72 1","pages":"39-58"},"PeriodicalIF":1.1000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3378","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 4
Abstract
The contour method is one of the promising techniques for the measurement of residual stresses in engineering components. In this method, the cut surfaces deform, owing to the relaxation of residual stresses. The deformations of the two cut surfaces are then measured and used to back calculate the 2-dimensional map of original residual stresses normal to the plane of the cut. Thus, it involves four main steps; specimen cutting, surface contour measurement, data analysis and finite element simulation. These steps should perform in a manner that they do not change the underlying features of surface deformation especially where the residual stress distribution varies over short distances. Therefore, to carefully implement these steps, it is important to select appropriate parameters such as surface deformation measurement spacing, data smoothing parameters (‘knot spacing’ for example cubic spline smoothing) and finite element mesh size. This research covers an investigation of these important parameters. A simple approach for choosing initial parameters is developed based on an idealised cosine displacement function (giving a self-equilibrated one-dimensional residual stress profile). In this research, guidelines are proposed to help the measurer to select the most suitable choice of these parameters based on the estimated wavelength of the residual stress field.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.