{"title":"The frequency-dependent polarization switching in nanograined BaTiO3 films under high-strength electric field","authors":"M. Zhang, Yu Su","doi":"10.1080/19475411.2023.2195686","DOIUrl":null,"url":null,"abstract":"ABSTRACT The polarization reorientation in ferroelectric nanomaterials under high-strength AC electric fields is intrinsically a frequency-dependent process. However, the related study is not widely seen. We report a phase-field investigation regarding the dynamics of polarization switching and the electromechanical characteristics of a polycrystalline BaTiO3 nanofilm under applied frequency from 0.1 to 80 kHz. The grain boundaries and the in-plane strains are considered in the model. The obtained hysteresis and butterfly loops exhibit a remarkable variety of shapes with the changing frequency. The underlying mechanism for the observed frequency-dependent physical properties was discussed via domain structure-based analysis. In addition, we examined the influence of the kinetic coefficient in the Ginzburg-Landau equation as well as the influence of the electric-field amplitude to the frequency dependency. It was found that a higher value of kinetic coefficient or field amplitude tends to enhance the mobility of polarization switching and to transform high-frequency characteristics to low-frequency ones. GRAPHICAL ABSTRACT","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"14 1","pages":"155 - 169"},"PeriodicalIF":4.5000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2023.2195686","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The polarization reorientation in ferroelectric nanomaterials under high-strength AC electric fields is intrinsically a frequency-dependent process. However, the related study is not widely seen. We report a phase-field investigation regarding the dynamics of polarization switching and the electromechanical characteristics of a polycrystalline BaTiO3 nanofilm under applied frequency from 0.1 to 80 kHz. The grain boundaries and the in-plane strains are considered in the model. The obtained hysteresis and butterfly loops exhibit a remarkable variety of shapes with the changing frequency. The underlying mechanism for the observed frequency-dependent physical properties was discussed via domain structure-based analysis. In addition, we examined the influence of the kinetic coefficient in the Ginzburg-Landau equation as well as the influence of the electric-field amplitude to the frequency dependency. It was found that a higher value of kinetic coefficient or field amplitude tends to enhance the mobility of polarization switching and to transform high-frequency characteristics to low-frequency ones. GRAPHICAL ABSTRACT
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.