{"title":"Predicting stock realized variance based on an asymmetric robust regression approach","authors":"Yaojie Zhang, Mengxi He, Yuqi Zhao, Xianfeng Hao","doi":"10.1111/boer.12392","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an asymmetric robust weighted least squares (ARLS) approach to improve the forecasting performance of the heterogeneous autoregressive model for realized volatility. The ARLS approach down-weights extreme observations to limit the bad influence of outliers on the estimated parameters. Compared with existing robust regression methods, our model further takes into account the asymmetry of outliers using a class of kernel functions. Out-of-sample results show the ARLS approach can generate more accurate forecasts of the S&P 500 index realized volatility in the statistical and economic senses. The model that considers the asymmetry of outliers gains superior performance among various robust regression competitors. The forecasting improvements also hold in other international stock markets. More importantly, the source of the predictive ability of the ARLS model comes from the less biased and more efficient parameter estimation.</p>","PeriodicalId":46233,"journal":{"name":"Bulletin of Economic Research","volume":"75 4","pages":"1022-1047"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Economic Research","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/boer.12392","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an asymmetric robust weighted least squares (ARLS) approach to improve the forecasting performance of the heterogeneous autoregressive model for realized volatility. The ARLS approach down-weights extreme observations to limit the bad influence of outliers on the estimated parameters. Compared with existing robust regression methods, our model further takes into account the asymmetry of outliers using a class of kernel functions. Out-of-sample results show the ARLS approach can generate more accurate forecasts of the S&P 500 index realized volatility in the statistical and economic senses. The model that considers the asymmetry of outliers gains superior performance among various robust regression competitors. The forecasting improvements also hold in other international stock markets. More importantly, the source of the predictive ability of the ARLS model comes from the less biased and more efficient parameter estimation.
期刊介绍:
The Bulletin of Economic Research is an international journal publishing articles across the entire field of economics, econometrics and economic history. The Bulletin contains original theoretical, applied and empirical work which makes a substantial contribution to the subject and is of broad interest to economists. We welcome submissions in all fields and, with the Bulletin expanding in new areas, we particularly encourage submissions in the fields of experimental economics, financial econometrics and health economics. In addition to full-length articles the Bulletin publishes refereed shorter articles, notes and comments; authoritative survey articles in all areas of economics and special themed issues.