{"title":"Retrieving similar trajectories from cellular data of multiple carriers at city scale","authors":"Zhihao Shen, Wan Du, Xi Zhao, Jianhua Zou","doi":"10.1145/3613245","DOIUrl":null,"url":null,"abstract":"Retrieving similar trajectories aims to search for the trajectories that are close to a query trajectory in spatio-temporal domain from a large trajectory dataset. This is critical for a variety of applications, like transportation planning and mobility analysis. Unlike previous studies that perform similar trajectory retrieval on fine-grained GPS data or single cellular carrier, we investigate the feasibility of finding similar trajectories from cellular data of multiple carriers, which provide more comprehensive coverage of population and space. To handle the issues of spatial bias of cellular data from multiple carriers, coarse spatial granularity, and irregular sparse temporal sampling, we develop a holistic system cellSim. Specifically, to avoid the issue of spatial bias, we first propose a novel map matching approach, which transforms the cell tower sequences from multiple carriers to routes on a unified road map. Then, to address the issue of temporal sparse sampling, we generate multiple routes with different confidences to increases the probability of finding truly similar trajectories. Finally, a new trajectory similarity measure is developed for similar trajectory search by calculating the similarities between the irregularly-sampled trajectories. Extensive experiments on a large-scale cellular dataset from two carriers and real-world 1,701-km query trajectories reveal that cellSim provides state-of-the-art performance for similar trajectory retrieval.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3613245","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Retrieving similar trajectories aims to search for the trajectories that are close to a query trajectory in spatio-temporal domain from a large trajectory dataset. This is critical for a variety of applications, like transportation planning and mobility analysis. Unlike previous studies that perform similar trajectory retrieval on fine-grained GPS data or single cellular carrier, we investigate the feasibility of finding similar trajectories from cellular data of multiple carriers, which provide more comprehensive coverage of population and space. To handle the issues of spatial bias of cellular data from multiple carriers, coarse spatial granularity, and irregular sparse temporal sampling, we develop a holistic system cellSim. Specifically, to avoid the issue of spatial bias, we first propose a novel map matching approach, which transforms the cell tower sequences from multiple carriers to routes on a unified road map. Then, to address the issue of temporal sparse sampling, we generate multiple routes with different confidences to increases the probability of finding truly similar trajectories. Finally, a new trajectory similarity measure is developed for similar trajectory search by calculating the similarities between the irregularly-sampled trajectories. Extensive experiments on a large-scale cellular dataset from two carriers and real-world 1,701-km query trajectories reveal that cellSim provides state-of-the-art performance for similar trajectory retrieval.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.