A feedback weighted fusion algorithm with dynamic sensor bias correction for gyroscope array

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Metrology and Measurement Systems Pub Date : 2023-07-20 DOI:10.24425/mms.2021.136000
Ding Yuan, Yongyuan Qin, Xiaowei Shen, Zongwei Wu
{"title":"A feedback weighted fusion algorithm with dynamic sensor bias correction for gyroscope array","authors":"Ding Yuan, Yongyuan Qin, Xiaowei Shen, Zongwei Wu","doi":"10.24425/mms.2021.136000","DOIUrl":null,"url":null,"abstract":"Low-cost Micro-Electromechanical System (MEMS) gyroscopes are known to have a smaller size, lower weight,andlesspowerconsumptionthantheirmoretechnologicallyadvancedcounterparts.However,current low-gradeMEMSgyroscopeshavepoorperformanceandcannotcompetewithqualitysensorsinhigh accuracynavigationalandguidanceapplications.Themainfocusofthispaperistoinvestigateperformance improvementsbyfusingmultiplehomogeneousMEMSgyroscopes.Thesegyrosaretransformedinto avirtualgyrousingafeedbackweightedfusionalgorithmwithdynamicsensorbiascorrection.The gyroscopearraycombineseighthomogeneousgyroscopeunitsoneachaxisanddividesthemintotwo layersofdifferentialconfiguration.Thealgorithmusesthegyroscopearrayestimationvaluetoremovethe gyroscopebiasandthencorrectthegyroscopearraymeasurementvalue.Thenthegyroscopevarianceis recalculatedinrealtimeaccordingtotherevisedmeasurementvalueandtheweightedcoefficientsand stateestimationofeachgyroscopearededucedaccordingtotheleastsquareprinciple.Thesimulations andexperimentsshowedthattheproposedalgorithmcouldfurtherreducethedriftandimprovetheoverall accuracybeyondtheperformancelimitationsofindividualgyroscopes.Themaximumcumulativeangle errorwas − 2 . 09 degrees after 2000 seconds in the static test, and the standard deviation (STD) of the output fusion value of the proposed algorithm was 0.006 degrees/s in the dynamic test, which was only 1.7% of the STD value of an individual gyroscope.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/mms.2021.136000","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1

Abstract

Low-cost Micro-Electromechanical System (MEMS) gyroscopes are known to have a smaller size, lower weight,andlesspowerconsumptionthantheirmoretechnologicallyadvancedcounterparts.However,current low-gradeMEMSgyroscopeshavepoorperformanceandcannotcompetewithqualitysensorsinhigh accuracynavigationalandguidanceapplications.Themainfocusofthispaperistoinvestigateperformance improvementsbyfusingmultiplehomogeneousMEMSgyroscopes.Thesegyrosaretransformedinto avirtualgyrousingafeedbackweightedfusionalgorithmwithdynamicsensorbiascorrection.The gyroscopearraycombineseighthomogeneousgyroscopeunitsoneachaxisanddividesthemintotwo layersofdifferentialconfiguration.Thealgorithmusesthegyroscopearrayestimationvaluetoremovethe gyroscopebiasandthencorrectthegyroscopearraymeasurementvalue.Thenthegyroscopevarianceis recalculatedinrealtimeaccordingtotherevisedmeasurementvalueandtheweightedcoefficientsand stateestimationofeachgyroscopearededucedaccordingtotheleastsquareprinciple.Thesimulations andexperimentsshowedthattheproposedalgorithmcouldfurtherreducethedriftandimprovetheoverall accuracybeyondtheperformancelimitationsofindividualgyroscopes.Themaximumcumulativeangle errorwas − 2 . 09 degrees after 2000 seconds in the static test, and the standard deviation (STD) of the output fusion value of the proposed algorithm was 0.006 degrees/s in the dynamic test, which was only 1.7% of the STD value of an individual gyroscope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陀螺仪阵列动态传感器偏置校正反馈加权融合算法
众所周知,低成本的微机电系统(MEMS)陀螺仪比技术更先进的陀螺仪尺寸更小,重量更轻,功耗更低。然而,目前低等级的mems陀螺仪性能差,无法与高质量的传感器在高精度导航和制导应用中竞争。Themainfocusofthispaperistoinvestigateperformance improvementsbyfusingmultiplehomogeneousMEMSgyroscopes。Thesegyrosaretransformedinto avirtualgyrousingafeedbackweightedfusionalgorithmwithdynamicsensorbiascorrection。陀螺仪阵列将八个同质陀螺仪单元组合在一起,并将其分为两层差分配置。Thealgorithmusesthegyroscopearrayestimationvaluetoremovethe gyroscopebiasandthencorrectthegyroscopearraymeasurementvalue。根据修正后的测量值,实时重新计算陀螺的方差,并根据最小二乘原理推导出各陀螺的加权系数和状态估计。仿真和实验表明,该算法可以进一步降低漂移,提高整体精度,超越单个陀螺仪的性能限制。最大累计角度误差为−2。在静态测试中,该算法的输出融合值的标准差(STD)为0.006度/s,仅为单个陀螺仪STD值的1.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metrology and Measurement Systems
Metrology and Measurement Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
10.00%
发文量
0
审稿时长
6 months
期刊介绍: Contributions are invited on all aspects of the research, development and applications of the measurement science and technology. The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments. The average publication cycle is 6 months.
期刊最新文献
148534 Selected Technical Issues of Deep Neural Networks for Image Classification Purposes Statistical process control of commercial force-sensing resistors Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders – part 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1