{"title":"Virtual Footwear Try-on in Augmented Reality using Deep Learning Models","authors":"Chih-Hsing Chu, Ting-Yang Chou, S. Liu","doi":"10.1115/1.4062596","DOIUrl":null,"url":null,"abstract":"\n Customization is an increasing trend in fashion product industry to reflect individual lifestyles. Previous studies have examined the idea of virtual footwear try-on in augmented reality (AR) using a depth camera. However, the depth camera restricts the deployment of this technology in practice. This research proposes to estimate the 6-DoF pose of a human foot from a color image using deep learning models to solve the problem. We construct a training dataset consisting of synthetic and real foot images that are automatically annotated. Three convolutional neural network models (DOPE, DOPE2, and YOLO6d) are trained with the dataset to predict the foot pose in real-time. The model performances are evaluated using metrics for accuracy, computational efficiency, and training time. A prototyping system implementing the best model demonstrates the feasibility of virtual footwear try-on using a RGB camera. Test results also indicate the necessity of real training data to bridge the reality gap in estimating the human foot pose.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062596","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Customization is an increasing trend in fashion product industry to reflect individual lifestyles. Previous studies have examined the idea of virtual footwear try-on in augmented reality (AR) using a depth camera. However, the depth camera restricts the deployment of this technology in practice. This research proposes to estimate the 6-DoF pose of a human foot from a color image using deep learning models to solve the problem. We construct a training dataset consisting of synthetic and real foot images that are automatically annotated. Three convolutional neural network models (DOPE, DOPE2, and YOLO6d) are trained with the dataset to predict the foot pose in real-time. The model performances are evaluated using metrics for accuracy, computational efficiency, and training time. A prototyping system implementing the best model demonstrates the feasibility of virtual footwear try-on using a RGB camera. Test results also indicate the necessity of real training data to bridge the reality gap in estimating the human foot pose.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping