M. Knoll, D. Fuchs, G. Weiss, R. Bellmann-Weiler, Bojana Kovrlija, K. Kurz
{"title":"Interferon-γ Mediated Pathways And Mitogen Stimulated Proliferation During And After An Acute Infection","authors":"M. Knoll, D. Fuchs, G. Weiss, R. Bellmann-Weiler, Bojana Kovrlija, K. Kurz","doi":"10.1515/pteridines-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract Background: Interferon-γ (IFN- γ) regulates the degradation of tryptophan to kynurenine via induction of indoleamine- 2,3-dioxygenase (IDO). Local tryptophan depletion and accumulation of toxic metabolites might impair the proliferative capacity of lymphocytes. The aim of this study was to assess the actual status of immune system activation of patients with bacterial infection in the acute phase and during convalescence in vivo and in vitro. Parameters of systemic immune system activation were evaluated for associations with proliferative responsiveness of immune cells, and compared with healthy controls. Methods: 24 patients with various acute bacterial infections were included in the group of acutely ill patients. Sixteen patients participated in a follow-up examination after convalescence. The control group consisted of 6 healthy people. To assess the status of immune system activation in vivo, inflammation parameters C-reactive protein and differential blood counts were determined. Neopterin concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Tryptophan and kynurenine measurements were performed with high pressure liquid chromatography (HPLC). Peripheral blood mononuclear cells (PBMCs) were isolated from the patients’ blood and stimulated with concanavalin A (Con A), phytohemagglutinin (PHA) and pokeweed mitogen (PWM) in vitro proliferation rates were evaluated by ³H-thymidine incorporation and neopterin production and tryptophan degradation were determined in supernatants of mitogen stimulated PBMCs. Results: Patients with acute bacterial infections showed reduced tryptophan and elevated neopterin concentrations, which did not normalize after convalescence period. Higher plasma neopterin values and increased IDO-activity were associated with reduced proliferative responses in vitro after stimulation with PHA. Associations were observed during acute infection as well as convalescence. Conclusions: Results of this study show that increased immune system activation in vivo is associated with impaired proliferative responsiveness of immune cells in vitro in acute bacterial infections as well as during convalescence.","PeriodicalId":20792,"journal":{"name":"Pteridines","volume":"29 1","pages":"70 - 79"},"PeriodicalIF":0.5000,"publicationDate":"2018-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/pteridines-2018-0005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pteridines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/pteridines-2018-0005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Background: Interferon-γ (IFN- γ) regulates the degradation of tryptophan to kynurenine via induction of indoleamine- 2,3-dioxygenase (IDO). Local tryptophan depletion and accumulation of toxic metabolites might impair the proliferative capacity of lymphocytes. The aim of this study was to assess the actual status of immune system activation of patients with bacterial infection in the acute phase and during convalescence in vivo and in vitro. Parameters of systemic immune system activation were evaluated for associations with proliferative responsiveness of immune cells, and compared with healthy controls. Methods: 24 patients with various acute bacterial infections were included in the group of acutely ill patients. Sixteen patients participated in a follow-up examination after convalescence. The control group consisted of 6 healthy people. To assess the status of immune system activation in vivo, inflammation parameters C-reactive protein and differential blood counts were determined. Neopterin concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Tryptophan and kynurenine measurements were performed with high pressure liquid chromatography (HPLC). Peripheral blood mononuclear cells (PBMCs) were isolated from the patients’ blood and stimulated with concanavalin A (Con A), phytohemagglutinin (PHA) and pokeweed mitogen (PWM) in vitro proliferation rates were evaluated by ³H-thymidine incorporation and neopterin production and tryptophan degradation were determined in supernatants of mitogen stimulated PBMCs. Results: Patients with acute bacterial infections showed reduced tryptophan and elevated neopterin concentrations, which did not normalize after convalescence period. Higher plasma neopterin values and increased IDO-activity were associated with reduced proliferative responses in vitro after stimulation with PHA. Associations were observed during acute infection as well as convalescence. Conclusions: Results of this study show that increased immune system activation in vivo is associated with impaired proliferative responsiveness of immune cells in vitro in acute bacterial infections as well as during convalescence.
期刊介绍:
Pteridines is an open acess international quarterly journal dealing with all aspects of pteridine research. Pteridines are heterocyclic fused ring compounds involved in a wide range of biological functions from the color on butterfly wings to cofactors in enzyme catalysis to essential vitamins. Of the pteridines, 5,6,7,8-tetrahydrobiopterin is the necessary cofactor of several aromatic amino acid monoxygenases, the nitric oxide synthases and glyceryl ether monoxygenase (GEMO). Neopterin plays an essential role in the immune system and is an important biomarker in laboratory medicine for diseases such as HIV, cardiovascular disease, malignant tumors, among others.
Topics:
-Neopterin, dihydroneopterin, monapterin-
Biopterin, tetrahydrobiopterin-
Folates, antifolates, riboflavin-
Phenylalanine, tyrosine, phenylketonuria, serotonin, adrenalin, noradrenalin, L-DOPA, dopamine, related biogenic amines-
Phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, nitric oxide synthases (iNOS), alkylglycerol monooxygenase (AGMO), dihydropterin reductase, sepiapterin reductase-
Homocysteine, mediators of inflammation, redox systems, iron.