Neural network interpolation operators activated by smooth ramp functions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-05-31 DOI:10.1142/S0219530521500123
Yunyou Qian, Dansheng Yu
{"title":"Neural network interpolation operators activated by smooth ramp functions","authors":"Yunyou Qian, Dansheng Yu","doi":"10.1142/S0219530521500123","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce some neural network interpolation operators activated by smooth ramp functions. By using the smoothness of the ramp functions, we can give some useful estimates of the derivatives of the neural networks, which combining with some techniques in approximation theory enable us to establish the converse estimates of approximation by neural networks. We establish both the direct and the converse results of approximation by the new neural network operators defined by us, and thus give the essential approximation rate. To improve the approximation rate for functions of smoothness, we further introduce linear combinations of the new operators. The new combinations interpolate the objective function and its derivative. We also estimate the uniform convergence rate and simultaneous approximation rate by the new combinations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219530521500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we introduce some neural network interpolation operators activated by smooth ramp functions. By using the smoothness of the ramp functions, we can give some useful estimates of the derivatives of the neural networks, which combining with some techniques in approximation theory enable us to establish the converse estimates of approximation by neural networks. We establish both the direct and the converse results of approximation by the new neural network operators defined by us, and thus give the essential approximation rate. To improve the approximation rate for functions of smoothness, we further introduce linear combinations of the new operators. The new combinations interpolate the objective function and its derivative. We also estimate the uniform convergence rate and simultaneous approximation rate by the new combinations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平滑斜坡函数激活的神经网络插值算子
本文介绍了一些由光滑斜坡函数激活的神经网络插值算子。利用斜坡函数的光滑性,我们可以给出神经网络导数的一些有用的估计,并结合近似理论中的一些技术,使我们能够建立神经网络近似的逆估计。我们建立了由我们定义的新的神经网络算子逼近的正反结果,从而给出了基本逼近率。为了提高光滑函数的逼近率,我们进一步引入了新算子的线性组合。新的组合对目标函数及其导数进行插值。我们还通过新的组合估计了一致收敛速率和同时逼近速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1