T. Sapkota, K. Dittmer, I. Ortiz-Monasterio, G. P. Mathivanan, K. Sonder, Juan Carlos Leyva, Miguel Angel García, Diana Ysimoto Monroy, Sadie W. Shelton, E. Wollenberg
{"title":"Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico","authors":"T. Sapkota, K. Dittmer, I. Ortiz-Monasterio, G. P. Mathivanan, K. Sonder, Juan Carlos Leyva, Miguel Angel García, Diana Ysimoto Monroy, Sadie W. Shelton, E. Wollenberg","doi":"10.1080/17583004.2022.2151939","DOIUrl":null,"url":null,"abstract":"Abstract Countries often lack methods for rapidly, but robustly determining greenhouse gas (GHG) mitigation actions and their impacts comprehensively in the land use sector to support commitments to the Paris Agreement. We present rapid assessment methods based on easily available spatial data and adoption costs for mitigation related to crops, livestock and forestry to identify priority locations and actions. Applying the methods for the case of Mexico, we found a national mitigation potential of 87.88 million tons (Mt) CO2eq yr−1, comprising 7.91, 7.66 and 72.31 Mt CO2eq yr−1 from crops, livestock and forestry/agro-forestry, respectively. At the state level, mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8 Mt CO2eq). Eleven states had a land use mitigation potential between 2.5 to 6.5 Mt CO2eq, while other states had mitigation potentials of less than 2 Mt CO2eq. Mitigation options for crops and livestock could reduce 60% and 6% of the respective emissions. Mitigation options for forestry could reduce emissions by half. If properly implemented, mitigation potentials on cropland can be realized with net benefits, compared to livestock and forestry options, which involve net costs. The method supports science-based priority setting of mitigation actions by location and subsector and should help inform future policy and implementation of countries’ nationally determined contributions.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2022.2151939","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Countries often lack methods for rapidly, but robustly determining greenhouse gas (GHG) mitigation actions and their impacts comprehensively in the land use sector to support commitments to the Paris Agreement. We present rapid assessment methods based on easily available spatial data and adoption costs for mitigation related to crops, livestock and forestry to identify priority locations and actions. Applying the methods for the case of Mexico, we found a national mitigation potential of 87.88 million tons (Mt) CO2eq yr−1, comprising 7.91, 7.66 and 72.31 Mt CO2eq yr−1 from crops, livestock and forestry/agro-forestry, respectively. At the state level, mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8 Mt CO2eq). Eleven states had a land use mitigation potential between 2.5 to 6.5 Mt CO2eq, while other states had mitigation potentials of less than 2 Mt CO2eq. Mitigation options for crops and livestock could reduce 60% and 6% of the respective emissions. Mitigation options for forestry could reduce emissions by half. If properly implemented, mitigation potentials on cropland can be realized with net benefits, compared to livestock and forestry options, which involve net costs. The method supports science-based priority setting of mitigation actions by location and subsector and should help inform future policy and implementation of countries’ nationally determined contributions.
期刊介绍:
Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology.
The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices.
One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.