{"title":"Flexible inference of optimal individualized treatment strategy in covariate adjusted randomization with multiple covariates","authors":"Trinetri Ghosh, Yanyuan Ma, Rui Song, Pingshou Zhong","doi":"10.1214/23-ejs2127","DOIUrl":null,"url":null,"abstract":"To maximize clinical benefit, clinicians routinely tailor treatment to the individual characteristics of each patient, where individualized treatment rules are needed and are of significant research interest to statisticians. In the covariate-adjusted randomization clinical trial with many covariates, we model the treatment effect with an unspecified function of a single index of the covariates and leave the baseline response completely arbitrary. We devise a class of estimators to consistently estimate the treatment effect function and its associated index while bypassing the estimation of the baseline response, which is subject to the curse of dimensionality. We further develop inference tools to identify predictive covariates and isolate effective treatment region. The usefulness of the methods is demonstrated in both simulations and a clinical data example.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2127","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
To maximize clinical benefit, clinicians routinely tailor treatment to the individual characteristics of each patient, where individualized treatment rules are needed and are of significant research interest to statisticians. In the covariate-adjusted randomization clinical trial with many covariates, we model the treatment effect with an unspecified function of a single index of the covariates and leave the baseline response completely arbitrary. We devise a class of estimators to consistently estimate the treatment effect function and its associated index while bypassing the estimation of the baseline response, which is subject to the curse of dimensionality. We further develop inference tools to identify predictive covariates and isolate effective treatment region. The usefulness of the methods is demonstrated in both simulations and a clinical data example.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.