N. Hamzah, M. H. Samat, N. A. Johari, A. Faizal, O. H. Hassan, A.M.M. Ali, R. Zakaria, N. H. Hussin, M. Yahya, M. Taib
{"title":"A DFT+U study of structural, electronic and optical properties of Ag- and Cu-doped ZnO","authors":"N. Hamzah, M. H. Samat, N. A. Johari, A. Faizal, O. H. Hassan, A.M.M. Ali, R. Zakaria, N. H. Hussin, M. Yahya, M. Taib","doi":"10.1108/mi-05-2022-0088","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to investigate the structural, electronic and optical properties of pure zinc oxide (ZnO) and transition metal (Tm)-doped ZnO using Tm elements from silver (Ag) and copper (Cu) by a first-principles study based on density functional theory (DFT) as implemented in the pseudo-potential plane wave in CASTEP computer code.\n\n\nDesign/methodology/approach\nThe calculations based on the generalized gradient approximation for Perdew-Burke-Ernzerhof for solids with Hubbard U (GGA-PBEsol+U) were performed by applying Hubbard corrections Ud = 5 eV for Zn 3d state, Up = 9 eV for O 2p state, Ud = 6 eV for Ag 4d state and Ud = 9.5 eV for Cu 3d state. The crystal structure used in this calculation was hexagonal wurtzite ZnO with a space group of P63mc and supercell 2 × 2 × 2.\n\n\nFindings\nThe total energy was calculated to determine the best position for Ag and Cu dopants. The band structures and density of states show that Tm-doped ZnO has a lower bandgaps value than pure ZnO because of impurity energy levels from Ag 4d and Cu 3d states. In addition, Ag-doped ZnO exhibits a remarkable enhancement in visible light absorption over pure ZnO and Cu-doped ZnO because of its lower energy region and extended wavelength spectrum.\n\n\nOriginality/value\nThe results of this paper are important for the basic understanding of the 3d and 4d Tm doping effect ZnO and have a wide range of applications in designing high-efficiency energy harvesting solar cells.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-05-2022-0088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to investigate the structural, electronic and optical properties of pure zinc oxide (ZnO) and transition metal (Tm)-doped ZnO using Tm elements from silver (Ag) and copper (Cu) by a first-principles study based on density functional theory (DFT) as implemented in the pseudo-potential plane wave in CASTEP computer code.
Design/methodology/approach
The calculations based on the generalized gradient approximation for Perdew-Burke-Ernzerhof for solids with Hubbard U (GGA-PBEsol+U) were performed by applying Hubbard corrections Ud = 5 eV for Zn 3d state, Up = 9 eV for O 2p state, Ud = 6 eV for Ag 4d state and Ud = 9.5 eV for Cu 3d state. The crystal structure used in this calculation was hexagonal wurtzite ZnO with a space group of P63mc and supercell 2 × 2 × 2.
Findings
The total energy was calculated to determine the best position for Ag and Cu dopants. The band structures and density of states show that Tm-doped ZnO has a lower bandgaps value than pure ZnO because of impurity energy levels from Ag 4d and Cu 3d states. In addition, Ag-doped ZnO exhibits a remarkable enhancement in visible light absorption over pure ZnO and Cu-doped ZnO because of its lower energy region and extended wavelength spectrum.
Originality/value
The results of this paper are important for the basic understanding of the 3d and 4d Tm doping effect ZnO and have a wide range of applications in designing high-efficiency energy harvesting solar cells.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.