Ji-Ning Zhang, Ran Yang, Xinhui Li, Chang-Wei Sun, Yichen Liu, Ying Wei, Jiachen Duan, Zhenda Xie, Y. Gong, Shi-Deng Zhu
{"title":"Realization of a source-device-independent quantum random number generator secured by nonlocal dispersion cancellation","authors":"Ji-Ning Zhang, Ran Yang, Xinhui Li, Chang-Wei Sun, Yichen Liu, Ying Wei, Jiachen Duan, Zhenda Xie, Y. Gong, Shi-Deng Zhu","doi":"10.1117/1.AP.5.3.036003","DOIUrl":null,"url":null,"abstract":"Abstract. Quantum random number generators (QRNGs) can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics, which play important roles in many applications. However, the true randomness acquisition could be subjected to attacks from untrusted devices involved or their deviations from the theoretical modeling in real-life implementation. We propose and experimentally demonstrate a source-device-independent QRNG, which enables one to access true random bits with an untrusted source device. The random bits are generated by measuring the arrival time of either photon of the time–energy entangled photon pairs produced from spontaneous parametric downconversion, where the entanglement is testified through the observation of nonlocal dispersion cancellation. In experiment, we extract a generation rate of 4 Mbps by a modified entropic uncertainty relation, which can be improved to gigabits per second by using advanced single-photon detectors. Our approach provides a promising candidate for QRNGs with no characterization or error-prone source devices in practice.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.3.036003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Quantum random number generators (QRNGs) can provide genuine randomness by exploiting the intrinsic probabilistic nature of quantum mechanics, which play important roles in many applications. However, the true randomness acquisition could be subjected to attacks from untrusted devices involved or their deviations from the theoretical modeling in real-life implementation. We propose and experimentally demonstrate a source-device-independent QRNG, which enables one to access true random bits with an untrusted source device. The random bits are generated by measuring the arrival time of either photon of the time–energy entangled photon pairs produced from spontaneous parametric downconversion, where the entanglement is testified through the observation of nonlocal dispersion cancellation. In experiment, we extract a generation rate of 4 Mbps by a modified entropic uncertainty relation, which can be improved to gigabits per second by using advanced single-photon detectors. Our approach provides a promising candidate for QRNGs with no characterization or error-prone source devices in practice.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.