A Probabilistic View on Predictive Constructions for Bayesian Learning

IF 3.4 1区 数学 Q1 STATISTICS & PROBABILITY Statistical Science Pub Date : 2022-08-14 DOI:10.1214/23-sts884
P. Berti, E. Dreassi, F. Leisen, P. Rigo, L. Pratelli
{"title":"A Probabilistic View on Predictive Constructions for Bayesian Learning","authors":"P. Berti, E. Dreassi, F. Leisen, P. Rigo, L. Pratelli","doi":"10.1214/23-sts884","DOIUrl":null,"url":null,"abstract":"Given a sequence $X=(X_1,X_2,\\ldots)$ of random observations, a Bayesian forecaster aims to predict $X_{n+1}$ based on $(X_1,\\ldots,X_n)$ for each $n\\ge 0$. To this end, in principle, she only needs to select a collection $\\sigma=(\\sigma_0,\\sigma_1,\\ldots)$, called ``strategy\"in what follows, where $\\sigma_0(\\cdot)=P(X_1\\in\\cdot)$ is the marginal distribution of $X_1$ and $\\sigma_n(\\cdot)=P(X_{n+1}\\in\\cdot\\mid X_1,\\ldots,X_n)$ the $n$-th predictive distribution. Because of the Ionescu-Tulcea theorem, $\\sigma$ can be assigned directly, without passing through the usual prior/posterior scheme. One main advantage is that no prior probability is to be selected. In a nutshell, this is the predictive approach to Bayesian learning. A concise review of the latter is provided in this paper. We try to put such an approach in the right framework, to make clear a few misunderstandings, and to provide a unifying view. Some recent results are discussed as well. In addition, some new strategies are introduced and the corresponding distribution of the data sequence $X$ is determined. The strategies concern generalized P\\'olya urns, random change points, covariates and stationary sequences.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-sts884","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Given a sequence $X=(X_1,X_2,\ldots)$ of random observations, a Bayesian forecaster aims to predict $X_{n+1}$ based on $(X_1,\ldots,X_n)$ for each $n\ge 0$. To this end, in principle, she only needs to select a collection $\sigma=(\sigma_0,\sigma_1,\ldots)$, called ``strategy"in what follows, where $\sigma_0(\cdot)=P(X_1\in\cdot)$ is the marginal distribution of $X_1$ and $\sigma_n(\cdot)=P(X_{n+1}\in\cdot\mid X_1,\ldots,X_n)$ the $n$-th predictive distribution. Because of the Ionescu-Tulcea theorem, $\sigma$ can be assigned directly, without passing through the usual prior/posterior scheme. One main advantage is that no prior probability is to be selected. In a nutshell, this is the predictive approach to Bayesian learning. A concise review of the latter is provided in this paper. We try to put such an approach in the right framework, to make clear a few misunderstandings, and to provide a unifying view. Some recent results are discussed as well. In addition, some new strategies are introduced and the corresponding distribution of the data sequence $X$ is determined. The strategies concern generalized P\'olya urns, random change points, covariates and stationary sequences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯学习预测结构的概率观
给定一个随机观察序列$X=(X_1,X_2,\ldots)$,贝叶斯预测者的目标是基于$(X_1,\ldots,X_n)$对每个$n\ge 0$进行预测$X_{n+1}$。为此,原则上,她只需要选择一个集合$\sigma=(\sigma_0,\sigma_1,\ldots)$,下面称之为“策略”,其中$\sigma_0(\cdot)=P(X_1\in\cdot)$是$X_1$的边际分布,$\sigma_n(\cdot)=P(X_{n+1}\in\cdot\mid X_1,\ldots,X_n)$是$n$的预测分布。由于Ionescu-Tulcea定理,$\sigma$可以直接分配,而无需通过通常的先验/后验方案。一个主要的优点是不需要选择先验概率。简而言之,这就是贝叶斯学习的预测方法。本文对后者作了简要的综述。我们试图将这种方法置于正确的框架中,澄清一些误解,并提供一个统一的观点。本文还讨论了最近的一些研究结果。此外,还引入了一些新的策略,并确定了相应的数据序列$X$的分布。这些策略涉及到广义Pólya回合、随机变化点、协变量和平稳序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
期刊最新文献
On the Use of Auxiliary Variables in Multilevel Regression and Poststratification. Scalable Empirical Bayes Inference and Bayesian Sensitivity Analysis. Variable Selection Using Bayesian Additive Regression Trees. Causal Inference Methods for Combining Randomized Trials and Observational Studies: A Review. Defining Replicability of Prediction Rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1