Slipper Surface Geometry Optimization of the Slipper/Swashplate Interface of Swashplate-Type Axial Piston Machines

IF 0.7 Q4 ENGINEERING, MECHANICAL International Journal of Fluid Power Pub Date : 2019-11-25 DOI:10.13052/ijfp1439-9776.2025
Ashkan A. Darbani, L. Shang, Jeremy Beale, M. Ivantysynova
{"title":"Slipper Surface Geometry Optimization of the Slipper/Swashplate Interface of Swashplate-Type Axial Piston Machines","authors":"Ashkan A. Darbani, L. Shang, Jeremy Beale, M. Ivantysynova","doi":"10.13052/ijfp1439-9776.2025","DOIUrl":null,"url":null,"abstract":"The slipper/swashplate interface, as one of the three main lubricating interfaces in swashplate type axial piston machine, serves both a sealing function and a bearing function while dissipating energy into heat due to viscous friction. The sealing function prevents the fluid in the displacement chamber from leaking out through the gap to the case, and the bearing function prevents the slipper from contacting to the swashplate. The challenge of the conventional slipper/swashplate lubricating interface design is to rely on the tribological pairing self-adaptive wearing process to find a slipper surface profile that fulfills the bearing function. However, the resulted slipper surface profile from uncontrollable wearing process is not necessarily able to achieve good energy efficiency. This article proposes a novel slipper design approach that overcomes this challenge by adding a quadratic spline curvature to the slipper running surface which eliminates the wear while keeping good efficiency. A fully-coupled fluid-structure and thermal interaction model is used to simulate the performance of the slipper/swashplate interface. A computationally inexpensive optimization scheme is used to find the desired slipper design. This article presents the simulation methodology, the optimization scheme, the full factorial simulation study results, and the optimized slipper running surface.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"245–270-245–270"},"PeriodicalIF":0.7000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 7

Abstract

The slipper/swashplate interface, as one of the three main lubricating interfaces in swashplate type axial piston machine, serves both a sealing function and a bearing function while dissipating energy into heat due to viscous friction. The sealing function prevents the fluid in the displacement chamber from leaking out through the gap to the case, and the bearing function prevents the slipper from contacting to the swashplate. The challenge of the conventional slipper/swashplate lubricating interface design is to rely on the tribological pairing self-adaptive wearing process to find a slipper surface profile that fulfills the bearing function. However, the resulted slipper surface profile from uncontrollable wearing process is not necessarily able to achieve good energy efficiency. This article proposes a novel slipper design approach that overcomes this challenge by adding a quadratic spline curvature to the slipper running surface which eliminates the wear while keeping good efficiency. A fully-coupled fluid-structure and thermal interaction model is used to simulate the performance of the slipper/swashplate interface. A computationally inexpensive optimization scheme is used to find the desired slipper design. This article presents the simulation methodology, the optimization scheme, the full factorial simulation study results, and the optimized slipper running surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斜盘式轴向活塞机滑靴/斜盘界面滑靴表面几何优化
滑靴/斜盘界面是斜盘式轴向活塞机的三大主要润滑界面之一,它既具有密封功能,又具有承载功能,同时由于粘滞摩擦使能量转化为热量。密封功能防止位移腔内的流体通过间隙泄漏到壳体内,轴承功能防止滑靴与斜盘接触。传统滑靴/斜盘润滑界面设计的挑战在于依靠摩擦学配对自适应磨损过程来寻找满足承载功能的滑靴表面轮廓。然而,由于不可控的磨损过程所产生的滑靴表面轮廓不一定能达到良好的能效。本文提出了一种新颖的滑靴设计方法,通过在滑靴运行面增加二次样条曲率来消除磨损,同时保持良好的效率。采用完全耦合的流固热耦合模型模拟滑靴/斜盘界面的性能。采用了一种计算成本低廉的优化方案来寻找理想的滑靴设计。本文介绍了仿真方法、优化方案、全因子仿真研究结果以及优化后的滑靴运行面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
期刊最新文献
A Review of Pilot-operated Hydraulic Valves – Development, Challenges, and a Comparative Study Facilitating Energy Monitoring and Fault Diagnosis of Pneumatic Cylinders with Exergy and Machine Learning Performance Analysis of a Pressurized Assembly with a Reinforced O-ring Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake Effect of Blowing Ratio on Turbine Blade Air Film Cooling Under Different Engine Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1