Shaoyi Wang, Jiawei Wu, Cai Peifu, Chen Cong, Shenghua Ye, Jianqiang Xu, Chen Liang, Xiaoyong Luo, Wei Jun
{"title":"Modelling of contaminant transport in heterogeneous vertical barrier","authors":"Shaoyi Wang, Jiawei Wu, Cai Peifu, Chen Cong, Shenghua Ye, Jianqiang Xu, Chen Liang, Xiaoyong Luo, Wei Jun","doi":"10.1111/wej.12896","DOIUrl":null,"url":null,"abstract":"Vertical barrier technique is an ideal candidate for site contamination control. In practical application, the characteristic of vertical cut‐off wall is heterogeneous with permeability decreases with depth due to the increasing geostatic stress. In this study, a numerical model was established considering the coupling effect of groundwater flow and contaminant transport considering depth dependent permeability. The results showed that a heterogeneous barrier with variable permeability can reduce the breakthrough time by 63.7% compared to a fixed permeability barrier. The contaminant concentration inside the wall was up to 10 times higher than outside. Shallow leakage occurs where the horizontal migration is dominated by advection. The distribution of pore‐water pressure in the system after the installation of high‐density polyethylene (HDPE) membranes significantly reduced the shallow convective effect by reducing up to 90% pore‐water pressure. Reinforcing the vertical barrier wall using HDPE membrane can effectively prevent the shallow leakage caused by the heterogeneity.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12896","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vertical barrier technique is an ideal candidate for site contamination control. In practical application, the characteristic of vertical cut‐off wall is heterogeneous with permeability decreases with depth due to the increasing geostatic stress. In this study, a numerical model was established considering the coupling effect of groundwater flow and contaminant transport considering depth dependent permeability. The results showed that a heterogeneous barrier with variable permeability can reduce the breakthrough time by 63.7% compared to a fixed permeability barrier. The contaminant concentration inside the wall was up to 10 times higher than outside. Shallow leakage occurs where the horizontal migration is dominated by advection. The distribution of pore‐water pressure in the system after the installation of high‐density polyethylene (HDPE) membranes significantly reduced the shallow convective effect by reducing up to 90% pore‐water pressure. Reinforcing the vertical barrier wall using HDPE membrane can effectively prevent the shallow leakage caused by the heterogeneity.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure