Numerical Study on the Various Profile Sections of Concrete Filled Steel Tubular Columns Under Compression

IF 0.8 Q4 ENGINEERING, CIVIL Electronic Journal of Structural Engineering Pub Date : 2023-07-25 DOI:10.56748/ejse.234083
Vinay Singh, Pramod Kumar Gupta, S. M. Ali Jawaid
{"title":"Numerical Study on the Various Profile Sections of Concrete Filled Steel Tubular Columns Under Compression","authors":"Vinay Singh, Pramod Kumar Gupta, S. M. Ali Jawaid","doi":"10.56748/ejse.234083","DOIUrl":null,"url":null,"abstract":"The axial load-carrying capacity for a wide range of short concrete-filled steel tubular (CFST) members having different section profiles is evaluated in the presented work. A numerical study has been carried out through Finite-Element based demonstration and it has been accomplished in the ABAQUS package for relevancy of analytically predicted axial load carrying capacity by unified formula as suggested by Yu M. et al. (2010). To validate the results from the unified formula and the experimentally available literature, finite element-based models for hollow and solid sections of CFST columns with circular, octagonal, and square section profiles have been generated. A total of 31 hollow and 24 solid circular columns, 9 hollow, and 9 solid octagonal columns, and in the last 9 hollows and 38 solid square CFST columns are examined for the persistence of the results. After evaluation of obtained results from the modeling existing results are validated, and it is found that the proposed unified formula predicts satisfactory results when compared with the result of established models. Further, it is concluded that displacement in the direction of applied load is not uniform throughout the length of CFST columns thereby using the ring confinement technique for the region of applied force may be reasonable.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.234083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The axial load-carrying capacity for a wide range of short concrete-filled steel tubular (CFST) members having different section profiles is evaluated in the presented work. A numerical study has been carried out through Finite-Element based demonstration and it has been accomplished in the ABAQUS package for relevancy of analytically predicted axial load carrying capacity by unified formula as suggested by Yu M. et al. (2010). To validate the results from the unified formula and the experimentally available literature, finite element-based models for hollow and solid sections of CFST columns with circular, octagonal, and square section profiles have been generated. A total of 31 hollow and 24 solid circular columns, 9 hollow, and 9 solid octagonal columns, and in the last 9 hollows and 38 solid square CFST columns are examined for the persistence of the results. After evaluation of obtained results from the modeling existing results are validated, and it is found that the proposed unified formula predicts satisfactory results when compared with the result of established models. Further, it is concluded that displacement in the direction of applied load is not uniform throughout the length of CFST columns thereby using the ring confinement technique for the region of applied force may be reasonable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢管混凝土受压柱不同截面的数值研究
本文对具有不同截面轮廓的各种短钢管混凝土构件的轴向承载能力进行了评估。通过基于有限元的演示进行了数值研究,并在ABAQUS软件包中通过Yu M.等人(2010)提出的统一公式对分析预测的轴向承载力的相关性进行了研究。为了验证统一公式和实验文献的结果,生成了圆形、八边形和方形截面钢管混凝土柱的空心和实心截面的有限元模型。共检查了31根空心和24根实心圆形柱、9根空心和9根实心八边形柱,以及最后9个空心和38根实心方形钢管混凝土柱的结果持久性。在对建模获得的结果进行评估后,对现有的结果进行了验证,发现所提出的统一公式与所建立的模型的结果相比,预测了令人满意的结果。此外,得出的结论是,在钢管混凝土柱的整个长度上,施加荷载方向上的位移并不均匀,因此对施加力的区域使用环形约束技术可能是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Journal of Structural Engineering
Electronic Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.
期刊最新文献
Evaluation of the dynamic additional impact about foundation pit construction on the existing adjacent subway station with the PBA method Seismic Assessment of High-Rise Buildings Having Transfer Elements Ultra-High-Performance Concrete (UHPC): A state-of-the-art review of material behavior, structural applications and future Assessment of uncertainties in damping reduction factors using ANN for acceleration, velocity and displacement spectra Effects of Structural Bracing on the Progressive Collapse Occurrence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1