Debiasing SHAP scores in random forests

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2023-08-22 DOI:10.1007/s10182-023-00479-7
Markus Loecher
{"title":"Debiasing SHAP scores in random forests","authors":"Markus Loecher","doi":"10.1007/s10182-023-00479-7","DOIUrl":null,"url":null,"abstract":"<div><p>Black box machine learning models are currently being used for high-stakes decision making in various parts of society such as healthcare and criminal justice. While tree-based ensemble methods such as random forests typically outperform deep learning models on tabular data sets, their built-in variable importance algorithms are known to be strongly biased toward high-entropy features. It was recently shown that the increasingly popular SHAP (SHapley Additive exPlanations) values suffer from a similar bias. We propose debiased or \"shrunk\" SHAP scores based on sample splitting which additionally enable the detection of overfitting issues at the feature level.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-023-00479-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00479-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Black box machine learning models are currently being used for high-stakes decision making in various parts of society such as healthcare and criminal justice. While tree-based ensemble methods such as random forests typically outperform deep learning models on tabular data sets, their built-in variable importance algorithms are known to be strongly biased toward high-entropy features. It was recently shown that the increasingly popular SHAP (SHapley Additive exPlanations) values suffer from a similar bias. We propose debiased or "shrunk" SHAP scores based on sample splitting which additionally enable the detection of overfitting issues at the feature level.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在随机森林中去偏SHAP分数
黑盒机器学习模型目前正被用于医疗保健和刑事司法等社会各领域的高风险决策。虽然基于树的集合方法(如随机森林)在表格数据集上的表现通常优于深度学习模型,但众所周知,其内置的变量重要性算法严重偏向于高熵特征。最近的研究表明,日益流行的 SHAP(SHapley Additive exPlanations)值也存在类似的偏差。我们提出了基于样本拆分的去偏或 "缩减 "SHAP 分数,它还能在特征层面检测过拟合问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1