Structure of digital metrological twins as software for uncertainty estimation

IF 0.8 Q4 INSTRUMENTS & INSTRUMENTATION Journal of Sensors and Sensor Systems Pub Date : 2022-03-09 DOI:10.5194/jsss-11-75-2022
I. Poroskun, C. Rothleitner, D. Heißelmann
{"title":"Structure of digital metrological twins as software for uncertainty estimation","authors":"I. Poroskun, C. Rothleitner, D. Heißelmann","doi":"10.5194/jsss-11-75-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Ongoing digitalization in metrology and the ever-growing complexity of measurement systems have increased the effort required to create complex software for uncertainty estimation. To address this issue, a general structure for uncertainty estimation software will be presented in this work. The structure was derived from the Virtual Coordinate Measuring Machine (VCMM), which is a well-established tool for uncertainty estimation in the field of coordinate metrology. To make it easy to apply the software structure to specific projects, a supporting software library was created. The library is written in a portable and extensible way using the C++ programming language. The software structure and library proposed can be used in different domains of metrology. The library provides all the components necessary for uncertainty estimation (i.e., random number generators and GUM S1-compliant routines). Only the project-specific parts of the software must be developed by potential users. To verify the usability of the software structure and the library, a Virtual Planck-Balance, which is the digital metrological twin of a Kibble balance, is currently being developed.\n","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/jsss-11-75-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Ongoing digitalization in metrology and the ever-growing complexity of measurement systems have increased the effort required to create complex software for uncertainty estimation. To address this issue, a general structure for uncertainty estimation software will be presented in this work. The structure was derived from the Virtual Coordinate Measuring Machine (VCMM), which is a well-established tool for uncertainty estimation in the field of coordinate metrology. To make it easy to apply the software structure to specific projects, a supporting software library was created. The library is written in a portable and extensible way using the C++ programming language. The software structure and library proposed can be used in different domains of metrology. The library provides all the components necessary for uncertainty estimation (i.e., random number generators and GUM S1-compliant routines). Only the project-specific parts of the software must be developed by potential users. To verify the usability of the software structure and the library, a Virtual Planck-Balance, which is the digital metrological twin of a Kibble balance, is currently being developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为不确定度估计软件的数字计量孪生结构
摘要计量学的持续数字化和测量系统的不断增长的复杂性增加了创建复杂的不确定度估计软件的工作量。为了解决这个问题,本文将介绍不确定性估计软件的一般结构。该结构来源于虚拟坐标测量机(VCMM), VCMM是坐标测量领域中公认的不确定度估计工具。为了便于将软件结构应用于特定的项目,创建了一个支持的软件库。该库是使用c++编程语言以可移植和可扩展的方式编写的。所提出的软件结构和库可用于不同的计量领域。该库提供了不确定性估计所需的所有组件(例如,随机数生成器和符合GUM s1的例程)。只有软件的特定项目部分必须由潜在用户开发。为了验证软件结构和库的可用性,目前正在开发一个虚拟普朗克天平,它是基布尔天平的数字计量双胞胎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sensors and Sensor Systems
Journal of Sensors and Sensor Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.30
自引率
10.00%
发文量
26
审稿时长
23 weeks
期刊介绍: Journal of Sensors and Sensor Systems (JSSS) is an international open-access journal dedicated to science, application, and advancement of sensors and sensors as part of measurement systems. The emphasis is on sensor principles and phenomena, measuring systems, sensor technologies, and applications. The goal of JSSS is to provide a platform for scientists and professionals in academia – as well as for developers, engineers, and users – to discuss new developments and advancements in sensors and sensor systems.
期刊最新文献
Wireless surface acoustic wave resonator sensors: fast Fourier transform, empirical mode decomposition or wavelets for the frequency estimation in one shot? Monitoring ammonia slip from large-scale selective catalytic reduction (SCR) systems in combined heat and power generation applications with field effect gas sensors Analysis of thermal-offset drift of a high-resolution current probe using a planar Hall resistance sensor Development of a gas chromatography system coupled to a metal-oxide semiconductor (MOS) sensor, with compensation of the temperature effects on the column for the measurement of ethene Methods to investigate the temperature distribution of heated ceramic gas sensors for high-temperature applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1