Hydrogen defects in feldspars: alkali-supported dehydrogenation of sanidine

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2023-06-23 DOI:10.1007/s00269-023-01242-9
Harald Behrens
{"title":"Hydrogen defects in feldspars: alkali-supported dehydrogenation of sanidine","authors":"Harald Behrens","doi":"10.1007/s00269-023-01242-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the first two papers of this series [Behrens, Phys Chem Minerals 48:8, 2021a; Behrens, Phys Chem Minerals 48:27, 2021b], incorporation of hydrogen in the feldspar structure, partitioning of hydrogen between feldspars and gases/fluids and self-diffusion of hydrogen in feldspars have been discussed, with particular focus on sanidine. Here, the results of reactions between sanidine containing strongly bonded hydrogen defects and (Na,K)Cl are presented. Experiments were performed at ambient pressure at temperatures of 605–1000 °C, and hydrogen profiles were measured by IR microspectroscopy. Profiles can be interpreted by an incomplete dehydrogenation at the crystal surface or a strong concentration dependence of hydrogen diffusivity. Both are consistent with hydrogen located on interstitial sites and difficult to substitute by the larger alkali ions. Chemical diffusivities of hydrogen derived from fitting of the profiles or Boltzmann–Matano analysis are similar to self-diffusivities determined by D/H exchange experiments. Activation energies are also comparable. Comparison to sodium and potassium diffusion data for sanidine (Wilangowski et al. in Defect Diffus Forum 363: 79–84, 2015; Hergemöller et al. in Phys Chem Minerals 44:345–351, 2017) supports a mechanism of proton diffusion charge-compensated by Na<sup>+</sup> diffusion for hydrogen removal in the sanidines under dry conditions.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01242-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01242-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the first two papers of this series [Behrens, Phys Chem Minerals 48:8, 2021a; Behrens, Phys Chem Minerals 48:27, 2021b], incorporation of hydrogen in the feldspar structure, partitioning of hydrogen between feldspars and gases/fluids and self-diffusion of hydrogen in feldspars have been discussed, with particular focus on sanidine. Here, the results of reactions between sanidine containing strongly bonded hydrogen defects and (Na,K)Cl are presented. Experiments were performed at ambient pressure at temperatures of 605–1000 °C, and hydrogen profiles were measured by IR microspectroscopy. Profiles can be interpreted by an incomplete dehydrogenation at the crystal surface or a strong concentration dependence of hydrogen diffusivity. Both are consistent with hydrogen located on interstitial sites and difficult to substitute by the larger alkali ions. Chemical diffusivities of hydrogen derived from fitting of the profiles or Boltzmann–Matano analysis are similar to self-diffusivities determined by D/H exchange experiments. Activation energies are also comparable. Comparison to sodium and potassium diffusion data for sanidine (Wilangowski et al. in Defect Diffus Forum 363: 79–84, 2015; Hergemöller et al. in Phys Chem Minerals 44:345–351, 2017) supports a mechanism of proton diffusion charge-compensated by Na+ diffusion for hydrogen removal in the sanidines under dry conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长石中的氢缺陷:碱支撑的苯胺脱氢
在本系列的前两篇论文中[Behrens,物理化学矿物48:8,2021a;Behrens,物理化学矿物48:27,2021 [b],讨论了氢在长石结构中的掺入,氢在长石与气体/流体之间的分配以及氢在长石中的自扩散,特别是氢在长石中的自扩散。本文介绍了含强键氢缺陷的苯胺与(Na,K)Cl的反应结果。实验在605-1000°C的环境压力下进行,并通过红外显微光谱测量氢谱。剖面可以通过晶体表面的不完全脱氢或氢扩散率的浓度依赖性来解释。两者都与位于间隙位置的氢相一致,难以被较大的碱离子取代。由玻尔兹曼-马塔诺分析得到的氢的化学扩散系数与由D/H交换实验确定的自扩散系数相似。活化能也是可以比较的。(Wilangowski et al.,缺陷扩散论坛363:79-84,2015;Hergemöller等人在物理化学矿物44:35 5 - 351,2017)支持质子扩散机制,由Na+扩散补偿,以在干燥条件下去除氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system Thermophysical properties of synthetic marialite Thermodynamic modeling of the Mn–Si–O system Fundamentals on dependence of volume on pressure and temperature High-temperature thermodynamic properties of Y-doped barium zirconates, BaZr1–xYxO3−x/2 (x = 0.1, 0.2), with perovskite-type structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1