{"title":"The Effects of Nanometer Titanium Dioxide on Tumor Cells and in Rats with Nasopharyngeal Carcinoma","authors":"Hui Liu, Peng Zhang, Fang Zhang, Qing Liu","doi":"10.1166/NNL.2020.3250","DOIUrl":null,"url":null,"abstract":"A drug delivery system based on nanomaterials has demonstrated a powerful function in disease treatment. In this study, a titanium-dioxide-nanotube-based cisplatin (nano-TiO2-DDP) delivery system was designed, and its effects in rats with nasopharyngeal carcinoma (NPC) and\n on tumor cells were analyzed. First, we obtained electrochemistry anodic oxidation (EAO) for the preparation of Nnano-TiO2, which was adopted as the carrier of cisplatin (CDDP). Then, we used a scanning electron microscope (SEM) to characterize and study the surface morphology of\n nano-TiO2. At the cellular level, flow cytometry, MTT, and Transwell assays were performed to analyze the apoptosis, proliferation, and invasion of cells treated by nano-TiO2-DDP, respectively. At the animal level, a xenotransplantation model was established for evaluating\n tumor growth and changes in experimental animals after injection of nano-TiO2-DDP. As a result, nano-TiO2-DDP strongly suppressed the invasion and vitality of tumor cells, induced their apoptosis, and delivered DDP more efficiently than did systems without a nano-TiO2\n structure. In addition, injected nano-TiO2-DDP strongly inhibited the growth of solid tumors in vivo. Therefore, we believe that nano-TiO2-DDP can effectively suppress the growth of NPC, and it is more efficient than conventional drugs.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"1431-1437"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A drug delivery system based on nanomaterials has demonstrated a powerful function in disease treatment. In this study, a titanium-dioxide-nanotube-based cisplatin (nano-TiO2-DDP) delivery system was designed, and its effects in rats with nasopharyngeal carcinoma (NPC) and
on tumor cells were analyzed. First, we obtained electrochemistry anodic oxidation (EAO) for the preparation of Nnano-TiO2, which was adopted as the carrier of cisplatin (CDDP). Then, we used a scanning electron microscope (SEM) to characterize and study the surface morphology of
nano-TiO2. At the cellular level, flow cytometry, MTT, and Transwell assays were performed to analyze the apoptosis, proliferation, and invasion of cells treated by nano-TiO2-DDP, respectively. At the animal level, a xenotransplantation model was established for evaluating
tumor growth and changes in experimental animals after injection of nano-TiO2-DDP. As a result, nano-TiO2-DDP strongly suppressed the invasion and vitality of tumor cells, induced their apoptosis, and delivered DDP more efficiently than did systems without a nano-TiO2
structure. In addition, injected nano-TiO2-DDP strongly inhibited the growth of solid tumors in vivo. Therefore, we believe that nano-TiO2-DDP can effectively suppress the growth of NPC, and it is more efficient than conventional drugs.