Analisis Model Pengukuran Tinggi Permukaan Air Dengan Metode Canny Edge Detection dan Image Contouring Sebagai Indikator Peringatan Dini Bencana Banjir

Frederick Alexander, I. Imelda
{"title":"Analisis Model Pengukuran Tinggi Permukaan Air Dengan Metode Canny Edge Detection dan Image Contouring Sebagai Indikator Peringatan Dini Bencana Banjir","authors":"Frederick Alexander, I. Imelda","doi":"10.30998/faktorexacta.v14i3.9567","DOIUrl":null,"url":null,"abstract":"Received Apr 14, 2021 Revised Agus 1, 2021 Accepted Sep 06, 2021 Flood disaster remains a natural phenomenon that often occurs in Indonesia, especially in the Wisma Tajur Housing Complex area, Tangerang City which causes property losses including the safety of the souls of the affected community. The difficulty experienced so far is how to measure the water level to obtain alert status information as an indicator of flood warning. As a solution in overcoming these problems, this research proposes a method based on digital image processing with canny edge detection algorithms and image contouring to measure river water levels. Canny edge detection and image contouring were chosen due to their accuracy in detecting the edges of the image and the ease of the computation process. The steps taken in this research are to conduct a simulation experiment of measuring the water level using a water container that can describe the situation in the river, then doing field testing. Canny edge detection produces an outline that can then be detected by the contour, then water level measurements can be made on the bounding rectangle that is formed and changes dynamically with fluctuations in water level. The contribution of this research is the use of black measuring lines that are processed using thresholding techniques to facilitate the process of measuring water level using a combination of canny edge detection and image contouring techniques as well as adding attributes/features using threshold, MinVal, and MaxVal values on the canny edge. Sampling testing produces an accuracy of 99.96%, prototype testing produces 100% accuracy, and direct testing produces an accuracy of 99.85%.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faktor Exacta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30998/faktorexacta.v14i3.9567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Received Apr 14, 2021 Revised Agus 1, 2021 Accepted Sep 06, 2021 Flood disaster remains a natural phenomenon that often occurs in Indonesia, especially in the Wisma Tajur Housing Complex area, Tangerang City which causes property losses including the safety of the souls of the affected community. The difficulty experienced so far is how to measure the water level to obtain alert status information as an indicator of flood warning. As a solution in overcoming these problems, this research proposes a method based on digital image processing with canny edge detection algorithms and image contouring to measure river water levels. Canny edge detection and image contouring were chosen due to their accuracy in detecting the edges of the image and the ease of the computation process. The steps taken in this research are to conduct a simulation experiment of measuring the water level using a water container that can describe the situation in the river, then doing field testing. Canny edge detection produces an outline that can then be detected by the contour, then water level measurements can be made on the bounding rectangle that is formed and changes dynamically with fluctuations in water level. The contribution of this research is the use of black measuring lines that are processed using thresholding techniques to facilitate the process of measuring water level using a combination of canny edge detection and image contouring techniques as well as adding attributes/features using threshold, MinVal, and MaxVal values on the canny edge. Sampling testing produces an accuracy of 99.96%, prototype testing produces 100% accuracy, and direct testing produces an accuracy of 99.85%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Canny边缘检测方法和等高线图像作为世界洪水预警指标的分析模型高地测量
2021年4月14日收到修订版Agus 2021年1日接受2021年9月6日洪水灾害仍然是印度尼西亚经常发生的自然现象,尤其是在唐格朗市的Wisma Tajur住宅区,它会造成财产损失,包括受影响社区的灵魂安全。到目前为止,遇到的困难是如何测量水位以获得警报状态信息作为洪水警报的指标。为了解决这些问题,本研究提出了一种基于数字图像处理的方法,结合精明的边缘检测算法和图像轮廓来测量河流水位。选择Canny边缘检测和图像轮廓是因为它们在检测图像边缘方面的准确性和计算过程的容易性。本研究采取的步骤是进行模拟实验,使用能够描述河流情况的盛水器测量水位,然后进行现场测试。Canny边缘检测产生一个轮廓,然后可以通过轮廓来检测,然后可以在形成的边界矩形上进行水位测量,该边界矩形随着水位的波动而动态变化。这项研究的贡献是使用了使用阈值技术处理的黑色测量线,以促进使用精明边缘检测和图像轮廓技术的组合测量水位的过程,以及使用精明边缘上的阈值、MinVal和MaxVal值添加属性/特征。抽样测试的准确度为99.96%,原型测试的准确率为100%,直接测试的准确程度为99.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Perancangan Diagnosa Covid-19 Menggunakan Metode Case Based Reasoning (CBR) Untuk Mengidentifikasi Tingkatan Gejala Pasien Covid-19 Analisis Model Matematika dan Simulasi Pada Penyebaran Hepatitis Non HepA-E Akut di Indonesia Perancangan Sistem Informasi Hino Service on Site (Studi Kasus : Dealer Hino, PT. Persada Lampung Raya) Penerapan Algoritma Sweep dan Particle Swarm Optimization (PSO) sebagai Alternatif Menentukan Rute Distribusi Penerapan Metode Convolution Neural Network (CNN) Dalam Proses Pengolahan Citra Untuk Mendeteksi Cacat Produksi Pada Produk Masker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1