首页 > 最新文献

Faktor Exacta最新文献

英文 中文
Penerapan Metode Convolution Neural Network (CNN) Dalam Proses Pengolahan Citra Untuk Mendeteksi Cacat Produksi Pada Produk Masker 在图像处理中应用卷积神经网络 (CNN) 方法检测面膜产品的生产缺陷
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.20073
Yozika Arvio, Dine Tiara Kusuma, Iriansyah Bm Sangadji, Erno Kurniawan Dewantara
ABSTRACT
摘要
{"title":"Penerapan Metode Convolution Neural Network (CNN) Dalam Proses Pengolahan Citra Untuk Mendeteksi Cacat Produksi Pada Produk Masker","authors":"Yozika Arvio, Dine Tiara Kusuma, Iriansyah Bm Sangadji, Erno Kurniawan Dewantara","doi":"10.30998/faktorexacta.v16i4.20073","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.20073","url":null,"abstract":"ABSTRACT","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perancangan Sistem Informasi Hino Service on Site (Studi Kasus : Dealer Hino, PT. Persada Lampung Raya) 日野服务现场信息系统设计(案例研究:日野经销商 PT.)
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.19447
R. Astuti, Firmansyah Firmansyah, MS Hasibuan
Service on site is one of the after-sales services for Hino Truck vehicles. The Service on Site contract program provides customer vehicle service services at the customer's location or site by placing a mechanic at the customer's location. In its implementation, several obstacles were encountered, such as the vehicle service history was not recorded, there were no service reports so the customer did not know the vehicle's performance. So this research develops the design of the Hino Service on Site Information System using observational research methods, literature review, and documentation. To build the system, Use Case diagrams were designed and then measured using Use Case Points (UCP) to assist management in expanding the Servicee on Site Information System. UCP will assist management when making decisions regarding system development in terms of time, human resources and finances. Software measurement using UCP in the Service on Site Information System at Hino Dealers PT. Persada Lampung Raya has a Use Case Point (UCP) score of 38.448 and is categorized as a small software size project, which is smaller than 99. With the proposed design of this system, it can simplify and speed up the on site service administration process and can provide information in the form of vehicle performance reports to customers so that they can improve service on site program
现场服务是日野卡车的售后服务之一。现场服务合同项目通过在客户所在地派驻机械师,在客户所在地或现场为客户提供车辆服务。在实施过程中,遇到了一些障碍,如车辆服务历史没有记录,没有服务报告,因此客户无法了解车辆的性能。因此,本研究采用观察研究法、文献综述和文献资料法来开发日野现场服务信息系统的设计。为建立该系统,设计了用例图,然后使用用例点 (UCP) 进行测量,以协助管理层扩展现场服务信息系统。UCP 将帮助管理层在时间、人力资源和资金方面做出有关系统开发的决策。在日野经销商 PT.该系统的设计建议可简化和加快现场服务管理流程,并以车辆性能报告的形式向客户提供信息,以便他们改进现场服务程序。
{"title":"Perancangan Sistem Informasi Hino Service on Site (Studi Kasus : Dealer Hino, PT. Persada Lampung Raya)","authors":"R. Astuti, Firmansyah Firmansyah, MS Hasibuan","doi":"10.30998/faktorexacta.v16i4.19447","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.19447","url":null,"abstract":"Service on site is one of the after-sales services for Hino Truck vehicles. The Service on Site contract program provides customer vehicle service services at the customer's location or site by placing a mechanic at the customer's location. In its implementation, several obstacles were encountered, such as the vehicle service history was not recorded, there were no service reports so the customer did not know the vehicle's performance. So this research develops the design of the Hino Service on Site Information System using observational research methods, literature review, and documentation. To build the system, Use Case diagrams were designed and then measured using Use Case Points (UCP) to assist management in expanding the Servicee on Site Information System. UCP will assist management when making decisions regarding system development in terms of time, human resources and finances. Software measurement using UCP in the Service on Site Information System at Hino Dealers PT. Persada Lampung Raya has a Use Case Point (UCP) score of 38.448 and is categorized as a small software size project, which is smaller than 99. With the proposed design of this system, it can simplify and speed up the on site service administration process and can provide information in the form of vehicle performance reports to customers so that they can improve service on site program","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"22 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deteksi Pelat Nomor Dengan Menggunakan Optical Character Recognition Berbasis Algoritma LSTM 利用基于 LSTM 算法的光学字符识别进行车牌检测
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.19216
E. Wardhani, Saruni Dwiasnati
ABSTRACT
摘要
{"title":"Deteksi Pelat Nomor Dengan Menggunakan Optical Character Recognition Berbasis Algoritma LSTM","authors":"E. Wardhani, Saruni Dwiasnati","doi":"10.30998/faktorexacta.v16i4.19216","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.19216","url":null,"abstract":"ABSTRACT","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"25 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perancangan Diagnosa Covid-19 Menggunakan Metode Case Based Reasoning (CBR) Untuk Mengidentifikasi Tingkatan Gejala Pasien Covid-19 使用病例推理(CBR)方法识别 Covid-19 患者症状水平的 Covid-19 诊断设计
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.19767
Nofita Rismawati, Muhamad Femy Mulya
,
,
{"title":"Perancangan Diagnosa Covid-19 Menggunakan Metode Case Based Reasoning (CBR) Untuk Mengidentifikasi Tingkatan Gejala Pasien Covid-19","authors":"Nofita Rismawati, Muhamad Femy Mulya","doi":"10.30998/faktorexacta.v16i4.19767","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.19767","url":null,"abstract":",","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"33 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Model Matematika dan Simulasi Pada Penyebaran Hepatitis Non HepA-E Akut di Indonesia 印度尼西亚急性非戊型肝炎传播的数学模型分析与模拟
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.19670
Rifki Ristiawan, Farrell Wahyudi, Noni Selvia
ABSTRACT
摘要
{"title":"Analisis Model Matematika dan Simulasi Pada Penyebaran Hepatitis Non HepA-E Akut di Indonesia","authors":"Rifki Ristiawan, Farrell Wahyudi, Noni Selvia","doi":"10.30998/faktorexacta.v16i4.19670","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.19670","url":null,"abstract":"ABSTRACT","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"23 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penerapan Algoritma Sweep dan Particle Swarm Optimization (PSO) sebagai Alternatif Menentukan Rute Distribusi 应用扫频算法和粒子群优化 (PSO) 作为确定配送路线的替代方法
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.18962
I. Fauzi, Imaniah Bazlina Wardani, Indra Lukmana Putra, Peni Puspitasari
One aspect of marketing activities is distribution. In the process of distributing goods, it is important to determine the optimal route that minimize mileage and reduce costs. This study aims to provide alternative solutions in determining distribution routes with the shortest distance which has implications for shorter travel times and lower costs. This research adapts the Capacitated Vehicle Routing Problem (CVRP) model with the approach of sweep and Particle Swarm Optimization (PSO) algorithm to determine the route. To generate a comparison route, we use the Nearest Neighbor (NN) algorithm. The result was that 100 agents were divided into 6 clusters and the total distance of the PSO-generated route is 218.115 units or 85.70% of the route distance generated by Nearest Neighbor algorithm.
营销活动的一个方面是分销。在配送货物的过程中,必须确定最优路线,以最大限度地减少里程和降低成本。本研究旨在为确定最短距离的配送路线提供替代解决方案,这对缩短旅行时间和降低成本具有重要意义。本研究采用有容量车辆路由问题(CVRP)模型,通过扫频和粒子群优化(PSO)算法来确定路线。为了生成比较路线,我们使用了近邻(NN)算法。结果是,100 个代理被分为 6 个群组,PSO 生成的路线总距离为 218.115 个单位,是近邻算法生成的路线距离的 85.70%。
{"title":"Penerapan Algoritma Sweep dan Particle Swarm Optimization (PSO) sebagai Alternatif Menentukan Rute Distribusi","authors":"I. Fauzi, Imaniah Bazlina Wardani, Indra Lukmana Putra, Peni Puspitasari","doi":"10.30998/faktorexacta.v16i4.18962","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.18962","url":null,"abstract":"One aspect of marketing activities is distribution. In the process of distributing goods, it is important to determine the optimal route that minimize mileage and reduce costs. This study aims to provide alternative solutions in determining distribution routes with the shortest distance which has implications for shorter travel times and lower costs. This research adapts the Capacitated Vehicle Routing Problem (CVRP) model with the approach of sweep and Particle Swarm Optimization (PSO) algorithm to determine the route. To generate a comparison route, we use the Nearest Neighbor (NN) algorithm. The result was that 100 agents were divided into 6 clusters and the total distance of the PSO-generated route is 218.115 units or 85.70% of the route distance generated by Nearest Neighbor algorithm.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"41 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering the K-means Algorithm with the Approach to Student Interpersonal Communication Patterns in Selecting Secondary Schools 利用 K-means 算法对选择中学的学生人际交往模式进行聚类
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.20852
Rayung Wulan, Themotia Titi Widaningsih, Fit Yanuar
{"title":"Clustering the K-means Algorithm with the Approach to Student Interpersonal Communication Patterns in Selecting Secondary Schools","authors":"Rayung Wulan, Themotia Titi Widaningsih, Fit Yanuar","doi":"10.30998/faktorexacta.v16i4.20852","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.20852","url":null,"abstract":"","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"21 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementasi Metode Perbandingan Eksponensial Dalam Sistem Pendukung Keputusan Pemberian Kredit Nasabah Pada PT Bank DKI Cabang Syariah Wahid Hasyim 在 PT Bank DKI Wahid Hasyim Syariah 分行客户授信决策支持系统中实施指数比较法
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.21040
Riri Fajriah, Melyana Melyana, Gandung Triyono
PT Bank DKI Cabang Syariah Wahid Hasyim adalah cabang usaha yang melayani segmentasi pasar syariah dari PT Bank DKI sebagai BUMD dari Pemerintah Provinsi DKI Jakarta. Adapun produk bank yang ditawarkan terkait jenis layanan keuangan dan berbagai jenis kredit yang ditawarkan kepada calon debitur, seperti Kredit Pemilikan Rumah (KPR), Mikro UMKM, Kredit Multiguna, Bank Garansi. Permasalahan yang dihadapi saat ini adalah masih cukup signifikan kasus kredit macet di bank akibat kesalahan keputusan dalam pemberian kredit dari data analisa kelayakan calon debitur. Oleh karena itu, tujuan penelitian ini adalah untuk merancang sistem pendukung keputusan dengan menggunakan metode waterfall analysis dengan model perbandingan eksponensial dimana sistem ini akan digunakan oleh Relationship Manager (RM) untuk mengevaluasi kelayakan kredit calon debitur dengan lebih tepat dan akurat. Hasil penelitian ini menyajikan rancangan sistem pendukung keputusan dengan metode perbandingan eksponensial yang dapat membantu proses analisa kredit dari data-data calon debitur yang diproses untuk menghasilkan ranking penilaian kelayakan pemberian kredit, dimana keputusan pemberian kredit diambil berdasarkan nilai tertinggi hasil perhitungan MPE dan hasil ini akan menjadai landasan bagi Relationship Manager sebagai prioritas calon debitur untuk proses selanjutnya mendapatkan persetujuan kredit dari Pemimpin Cabang sebagai penyelia kredit di PT Bank DKI Cabang Syariah Wahid Hasyim.
PT Bank DKI Wahid Hasyim Syariah Branch 是雅加达 DKI 省政府下属的 PT Bank DKI 伊斯兰教法分行,为伊斯兰教法市场提供服务。该分行提供的银行产品涉及金融服务类型以及向潜在债务人提供的各类信贷,如住房自有贷款(KPR)、微型中小微企业贷款、多用途贷款、银行担保等。目前面临的问题是,由于从潜在债务人可行性分析数据中得出的授信决策失误,银行仍存在大量不良信贷案例。因此,本研究的目的是利用瀑布分析法和指数比较模型设计一个决策支持系统,关系经理(RM)将利用该系统更准确、更精确地评估潜在债务人的信用度。本研究的结果介绍了一种使用指数比较法的决策支持系统设计,该系统可以帮助对潜在债务人数据进行信用分析,处理后产生信用度评估排名,根据 MPE 计算结果的最高值做出授信决定,这些结果将成为关系经理的依据,作为潜在债务人下一步从作为 PT Bank DKI Wahid Hasyim Syariah Branch 信贷主管的分行经理处获得信贷审批的优先级。
{"title":"Implementasi Metode Perbandingan Eksponensial Dalam Sistem Pendukung Keputusan Pemberian Kredit Nasabah Pada PT Bank DKI Cabang Syariah Wahid Hasyim","authors":"Riri Fajriah, Melyana Melyana, Gandung Triyono","doi":"10.30998/faktorexacta.v16i4.21040","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.21040","url":null,"abstract":"PT Bank DKI Cabang Syariah Wahid Hasyim adalah cabang usaha yang melayani segmentasi pasar syariah dari PT Bank DKI sebagai BUMD dari Pemerintah Provinsi DKI Jakarta. Adapun produk bank yang ditawarkan terkait jenis layanan keuangan dan berbagai jenis kredit yang ditawarkan kepada calon debitur, seperti Kredit Pemilikan Rumah (KPR), Mikro UMKM, Kredit Multiguna, Bank Garansi. Permasalahan yang dihadapi saat ini adalah masih cukup signifikan kasus kredit macet di bank akibat kesalahan keputusan dalam pemberian kredit dari data analisa kelayakan calon debitur. Oleh karena itu, tujuan penelitian ini adalah untuk merancang sistem pendukung keputusan dengan menggunakan metode waterfall analysis dengan model perbandingan eksponensial dimana sistem ini akan digunakan oleh Relationship Manager (RM) untuk mengevaluasi kelayakan kredit calon debitur dengan lebih tepat dan akurat. Hasil penelitian ini menyajikan rancangan sistem pendukung keputusan dengan metode perbandingan eksponensial yang dapat membantu proses analisa kredit dari data-data calon debitur yang diproses untuk menghasilkan ranking penilaian kelayakan pemberian kredit, dimana keputusan pemberian kredit diambil berdasarkan nilai tertinggi hasil perhitungan MPE dan hasil ini akan menjadai landasan bagi Relationship Manager sebagai prioritas calon debitur untuk proses selanjutnya mendapatkan persetujuan kredit dari Pemimpin Cabang sebagai penyelia kredit di PT Bank DKI Cabang Syariah Wahid Hasyim.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"28 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PENERAPAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFKASI KUALITAS DAGING SAPI PADA APLIKASI BERBASIS ANDROID 在基于 Android 的应用程序中应用卷积神经网络方法进行牛肉质量分类
Pub Date : 2024-01-08 DOI: 10.30998/faktorexacta.v16i4.19564
Phaksi Bangun Asmoro, Achmad Solichin
ABSTRACT
摘要
{"title":"PENERAPAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFKASI KUALITAS DAGING SAPI PADA APLIKASI BERBASIS ANDROID","authors":"Phaksi Bangun Asmoro, Achmad Solichin","doi":"10.30998/faktorexacta.v16i4.19564","DOIUrl":"https://doi.org/10.30998/faktorexacta.v16i4.19564","url":null,"abstract":"ABSTRACT","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"21 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediksi Analisis Penderita Covid19 di Indonesia dengan Metode Linier Regresi dan Unsupervised Learning 印度尼西亚Covid19患者分析的预测方法是线性回归和未监督学习
Pub Date : 2021-10-22 DOI: 10.30998/faktorexacta.v14i3.10591
Y. Cahyana, Amril Mutoi Siregar
Penyakit COVID-19 sekarang ini telah dinyatakan penyeakit pandemic karena tingkat penyebaran dan resiko yang ditimbulkan sangat berbahaya. Berbagai langkah seperti program awareness social distancing dan contact tracing telah dilakukan untuk mengendalikan wabah COVID-19. Jika tidak ada vaksin prediksi kasus yang dikonfirmasi meninggal dan pulih diperlukan untuk meningkatkan kapasitas sistem perawatan kesehatan dan mengendalikan penularan. Dalam studi ini kasus kumulatif dan harian dikonfirmasi meninggal dan pulih di Indonesia. Analisisa tidak mempertimbangkan perubahan apa pun dalam tindakan pengendalian pemerintah. Informasi dari studi ini dapat memberikan informasi yang relevan kepada pemerintah dan pejabat Kesehatan dan masyarakat. Bagaimana tingkat kesembuhan terhadap terkonfirmasi tingkat kematian terhadap jumlah penderita. Penelitian ini menggunakan model regresi dan clustering dengan K-means menggunakan unsupervised learning dan supervised learning untuk membangun distribusi model. Hasil penelitian ini dengan metode regresi dengan R2 = 0.99 sedangkan untuk clustering denga K= interval 10 - 15 dilihat dari hasil metode elbow The COVID-19 disease has now been declared a pandemic disease because the level of spread and the risk posed is very dangerous. Various steps such as awareness programs, social distancing, and contact tracing have been taken to control the COVID-19 outbreak. In the absence of a vaccine, prediction of confirmed cases, deaths, and recoveries is needed to increase the capacity of the health care system and control transmission. In this study, cumulative and daily cases were confirmed, died, and recovered in Indonesia. The analysis does not consider any changes in government control measures. Information from this study can provide relevant information to government and health officials and the public. How is the cure rate to the confirmed, the death rate to the number of sufferers? This study uses regression and clustering models with K-means, using unsupervised learning and supervised learning to build the distribution model. The results of this study using the regression method with R2 = 0.99, while for clustering with K = 10 - 15 intervals seen from the results of the elbow method. Keywords: COVID-19, Regresi, Unsupervised learning, Prediction, k-means
新冠肺炎由于其非常危险的传播和风险,现已被报道为一种流行病。为控制新冠肺炎,已采取了保持社交距离和追踪接触者等措施。如果没有疫苗可以预测确诊的死亡病例,就需要康复来提高医疗保健系统的能力并控制传播。在这项研究中,印尼的累计病例和每日确诊的死亡和康复情况。分析没有考虑政府控制行动的任何变化。这项研究的信息可以为政府、卫生办公室和公众提供相关信息。相对于确诊死亡率和患者人数的康复率。本研究使用回归模型和K-means聚类,使用无监督学习和监督学习来构建模型分布。这项研究采用回归方法得出的结果,R2=0.99,而K=区间10-15的聚类结果来自肘部方法的结果。新冠肺炎疾病现已被宣布为大流行性疾病,因为其传播水平和风险非常危险。为控制新冠肺炎疫情,已采取了提高认识计划、保持社交距离和追踪接触者等各种措施。在没有疫苗的情况下,需要预测确诊病例、死亡和康复情况,以提高医疗保健系统的能力并控制传播。在这项研究中,印度尼西亚的累计病例和每日病例均为确诊、死亡和康复病例。该分析没有考虑政府控制措施的任何变化。这项研究的信息可以为政府、卫生官员和公众提供相关信息。确诊者的治愈率如何,患者的死亡率如何?本研究使用K-means回归和聚类模型,使用无监督学习和监督学习来构建分布模型。本研究的结果采用R2=0.99的回归方法,而对于K=10-15区间的聚类,则采用肘部法的结果。关键词:新冠肺炎,回归,无监督学习,预测,k-均值
{"title":"Prediksi Analisis Penderita Covid19 di Indonesia dengan Metode Linier Regresi dan Unsupervised Learning","authors":"Y. Cahyana, Amril Mutoi Siregar","doi":"10.30998/faktorexacta.v14i3.10591","DOIUrl":"https://doi.org/10.30998/faktorexacta.v14i3.10591","url":null,"abstract":"Penyakit COVID-19 sekarang ini telah dinyatakan penyeakit pandemic karena tingkat penyebaran dan resiko yang ditimbulkan sangat berbahaya. Berbagai langkah seperti program awareness social distancing dan contact tracing telah dilakukan untuk mengendalikan wabah COVID-19. Jika tidak ada vaksin prediksi kasus yang dikonfirmasi meninggal dan pulih diperlukan untuk meningkatkan kapasitas sistem perawatan kesehatan dan mengendalikan penularan. Dalam studi ini kasus kumulatif dan harian dikonfirmasi meninggal dan pulih di Indonesia. Analisisa tidak mempertimbangkan perubahan apa pun dalam tindakan pengendalian pemerintah. Informasi dari studi ini dapat memberikan informasi yang relevan kepada pemerintah dan pejabat Kesehatan dan masyarakat. Bagaimana tingkat kesembuhan terhadap terkonfirmasi tingkat kematian terhadap jumlah penderita. Penelitian ini menggunakan model regresi dan clustering dengan K-means menggunakan unsupervised learning dan supervised learning untuk membangun distribusi model. Hasil penelitian ini dengan metode regresi dengan R2 = 0.99 sedangkan untuk clustering denga K= interval 10 - 15 dilihat dari hasil metode elbow The COVID-19 disease has now been declared a pandemic disease because the level of spread and the risk posed is very dangerous. Various steps such as awareness programs, social distancing, and contact tracing have been taken to control the COVID-19 outbreak. In the absence of a vaccine, prediction of confirmed cases, deaths, and recoveries is needed to increase the capacity of the health care system and control transmission. In this study, cumulative and daily cases were confirmed, died, and recovered in Indonesia. The analysis does not consider any changes in government control measures. Information from this study can provide relevant information to government and health officials and the public. How is the cure rate to the confirmed, the death rate to the number of sufferers? This study uses regression and clustering models with K-means, using unsupervised learning and supervised learning to build the distribution model. The results of this study using the regression method with R2 = 0.99, while for clustering with K = 10 - 15 intervals seen from the results of the elbow method. Keywords: COVID-19, Regresi, Unsupervised learning, Prediction, k-means","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":"48 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41259277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faktor Exacta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1