Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2022-06-26 DOI:10.1117/1.AP.5.3.036006
Zhongzheng Lin, Jianqi Hu, Yujie Chen, C. Brès, Siyuan Yu
{"title":"Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval","authors":"Zhongzheng Lin, Jianqi Hu, Yujie Chen, C. Brès, Siyuan Yu","doi":"10.1117/1.AP.5.3.036006","DOIUrl":null,"url":null,"abstract":"Abstract. Orbital angular momentum (OAM) spectrum diagnosis is a fundamental building block for diverse OAM-based systems. Among others, the simple on-axis interferometric measurement can retrieve the amplitude and phase information of complex OAM spectra in a few shots. Yet, its single-shot retrieval remains elusive, due to the signal–signal beat interference inherent in the measurement. Here, we introduce the concept of Kramers–Kronig (KK) receiver in coherent communications to the OAM domain, enabling rigorous, single-shot OAM spectrum measurement. We explain in detail the working principle and the requirement of the KK method and then apply the technique to precisely measure various characteristic OAM states. In addition, we discuss the effects of the carrier-to-signal power ratio and the number of sampling points essential for rigorous retrieval and evaluate the performance on a large set of random OAM spectra and high-dimensional spaces. Single-shot KK interferometry shows enormous potential for characterizing complex OAM states in real time.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"036006 - 036006"},"PeriodicalIF":20.6000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.3.036006","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. Orbital angular momentum (OAM) spectrum diagnosis is a fundamental building block for diverse OAM-based systems. Among others, the simple on-axis interferometric measurement can retrieve the amplitude and phase information of complex OAM spectra in a few shots. Yet, its single-shot retrieval remains elusive, due to the signal–signal beat interference inherent in the measurement. Here, we introduce the concept of Kramers–Kronig (KK) receiver in coherent communications to the OAM domain, enabling rigorous, single-shot OAM spectrum measurement. We explain in detail the working principle and the requirement of the KK method and then apply the technique to precisely measure various characteristic OAM states. In addition, we discuss the effects of the carrier-to-signal power ratio and the number of sampling points essential for rigorous retrieval and evaluate the performance on a large set of random OAM spectra and high-dimensional spaces. Single-shot KK interferometry shows enormous potential for characterizing complex OAM states in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单次Kramers-Kronig复轨道角动量谱反演
摘要轨道角动量(OAM)频谱诊断是基于OAM的各种系统的基本组成部分。其中,简单的轴上干涉测量可以在几次拍摄中检索复杂OAM光谱的振幅和相位信息。然而,由于测量中固有的信号-信号差拍干扰,其单次拍摄恢复仍然难以捉摸。在这里,我们将相干通信中的Kramers–Kronig(KK)接收器的概念引入OAM域,从而实现严格的单次OAM频谱测量。我们详细解释了KK方法的工作原理和要求,然后将该技术应用于精确测量各种特征OAM状态。此外,我们还讨论了载波与信号功率比和采样点数量对严格检索的影响,并评估了在一大组随机OAM谱和高维空间上的性能。单次KK干涉测量显示出实时表征复杂OAM状态的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Organic near-infrared optoelectronic materials and devices: an overview Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces Quantum dots for optoelectronics Surfing the metasurface: a conversation with Din Ping Tsai Nonlinear chiral metaphotonics: a perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1