Nasikhudin Nasikhudin, Fina Nur Azizah, U. Sa’adah, M. Diantoro, H. Hartatiek, R. Subramaniam
{"title":"Development of Electrospun Polymer Nanofiber Membrane Based on PAN/PVDF as a Supercapacitor Separator","authors":"Nasikhudin Nasikhudin, Fina Nur Azizah, U. Sa’adah, M. Diantoro, H. Hartatiek, R. Subramaniam","doi":"10.5614/j.eng.technol.sci.2023.55.9","DOIUrl":null,"url":null,"abstract":"Among various types of energy storage, the supercapacitor is regarded as the most promising device due to its long cycling life, good cycling stability, and high power density. A supercapacitor is generally composed of electrodes, electrolytes, and a separator. The separator is one of the most important components, serving to prevent internal short circuits between the anode and the cathode. Herein, a nanostructured-based separator in a PAN/PVDF nanofiber scheme is introduced for improving the electrochemical performance of the supercapacitor. Briefly, the membranes were produced via the electrospinning technique. All of the raw materials were blended in various compositions of PVDF for optimization purposes. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were carried out to identify the microstructure of the nanofibers. The electrochemical properties of the membrane were measured using galvanostatic charge-discharge (GCD). Based on GCD, it was shown that the PAN/PVDF 20 wt% membrane exhibited the optimum gravimetric capacitance at 54.104 Fg-1 as evidenced by a high porosity percentage. Thus, the PAN/PVDF nanofiber has good potential as a separator for application in supercapacitors.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Among various types of energy storage, the supercapacitor is regarded as the most promising device due to its long cycling life, good cycling stability, and high power density. A supercapacitor is generally composed of electrodes, electrolytes, and a separator. The separator is one of the most important components, serving to prevent internal short circuits between the anode and the cathode. Herein, a nanostructured-based separator in a PAN/PVDF nanofiber scheme is introduced for improving the electrochemical performance of the supercapacitor. Briefly, the membranes were produced via the electrospinning technique. All of the raw materials were blended in various compositions of PVDF for optimization purposes. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were carried out to identify the microstructure of the nanofibers. The electrochemical properties of the membrane were measured using galvanostatic charge-discharge (GCD). Based on GCD, it was shown that the PAN/PVDF 20 wt% membrane exhibited the optimum gravimetric capacitance at 54.104 Fg-1 as evidenced by a high porosity percentage. Thus, the PAN/PVDF nanofiber has good potential as a separator for application in supercapacitors.
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.