{"title":"Research on the Seed Respiration CO2 Detection System Based on TDLAS Technology","authors":"Lu Gao, Ying Zang, Guangwu Zhao, Hengnian Qi, Qizhe Tang, Qingshan Liu, Liangquan Jia","doi":"10.1155/2023/8017726","DOIUrl":null,"url":null,"abstract":"The traditional detection method of CO2 concentration in seed respiration has defects such as low detection accuracy, low detection efficiency, and inability to monitor in real time. In order to solve these problems, we report a seed respiration CO2 detection system based on wavelength modulation spectroscopy (WMS) techniques in tunable diode laser absorption spectroscopy (TDLAS). This system uses a 2004 nm distributed feedback (DFB) laser as the light source, and a double-layer seed respiration device (about 1.5 L) is designed based on Herriott cell with an effective optical path of about 21 meters. Then, the second harmonic (2f) signal is extracted by the wavelength modulation method for CO2 concentration inversion. When the ambient temperature and pressure changes greatly, the corrected 2f signal is used for CO2 concentration inversion to improve the accuracy. A series of verification and comparison experiments have proved that the seed respiration CO2 detection system has the advantages of strong stability, high sampling frequency, and high detection accuracy. Finally, we used the developed system to measure the respiration intensity and respiration rate of 1 g corn seeds. The respiration intensity curves and respiration rate change details show that the seed respiration CO2 detection system is more suitable for a small amount of seeds than nondispersive infrared (NDIR) CO2 sensor and gas chromatography in real-time monitoring of the breathing process.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/8017726","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional detection method of CO2 concentration in seed respiration has defects such as low detection accuracy, low detection efficiency, and inability to monitor in real time. In order to solve these problems, we report a seed respiration CO2 detection system based on wavelength modulation spectroscopy (WMS) techniques in tunable diode laser absorption spectroscopy (TDLAS). This system uses a 2004 nm distributed feedback (DFB) laser as the light source, and a double-layer seed respiration device (about 1.5 L) is designed based on Herriott cell with an effective optical path of about 21 meters. Then, the second harmonic (2f) signal is extracted by the wavelength modulation method for CO2 concentration inversion. When the ambient temperature and pressure changes greatly, the corrected 2f signal is used for CO2 concentration inversion to improve the accuracy. A series of verification and comparison experiments have proved that the seed respiration CO2 detection system has the advantages of strong stability, high sampling frequency, and high detection accuracy. Finally, we used the developed system to measure the respiration intensity and respiration rate of 1 g corn seeds. The respiration intensity curves and respiration rate change details show that the seed respiration CO2 detection system is more suitable for a small amount of seeds than nondispersive infrared (NDIR) CO2 sensor and gas chromatography in real-time monitoring of the breathing process.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.