Parameters Identification of Industrial Induction Motor Using Manufacturer Data Sheet and Power Quality Analyzer

Shahnaz Habibkhah, M. Ghiyasi, J. Arasi, Li Li
{"title":"Parameters Identification of Industrial Induction Motor Using Manufacturer Data Sheet and Power Quality Analyzer","authors":"Shahnaz Habibkhah, M. Ghiyasi, J. Arasi, Li Li","doi":"10.15866/IREACO.V10I4.11808","DOIUrl":null,"url":null,"abstract":"This paper intends to identify circuit parameters of an installed induction motor in an innovative way which is different from standard tests. In this paper, easily available motor manufacturer data is used by which rated output power, rated terminal voltage, full load efficiency, full load power factor, nominal speed, number of poles, and locked rotor current are provided. In order to estimate the parameters, nonlinear mathematical equations of motor are derived and iterative Gauss-Seidel method is used to solve them in MATLAB. Identified parameters are then transferred to MATLAB/Simulink model of the motor to simulate its performance during Star-Delta start. Validation of parameters is evaluated by comparing the result of Simulink with real-time measurement of an industrial Power Quality Analyzer.","PeriodicalId":38433,"journal":{"name":"International Review of Automatic Control","volume":"10 1","pages":"341-348"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREACO.V10I4.11808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper intends to identify circuit parameters of an installed induction motor in an innovative way which is different from standard tests. In this paper, easily available motor manufacturer data is used by which rated output power, rated terminal voltage, full load efficiency, full load power factor, nominal speed, number of poles, and locked rotor current are provided. In order to estimate the parameters, nonlinear mathematical equations of motor are derived and iterative Gauss-Seidel method is used to solve them in MATLAB. Identified parameters are then transferred to MATLAB/Simulink model of the motor to simulate its performance during Star-Delta start. Validation of parameters is evaluated by comparing the result of Simulink with real-time measurement of an industrial Power Quality Analyzer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于制造商数据表和电能质量分析仪的工业感应电动机参数识别
本文试图用一种不同于标准测试的创新方法来识别已安装的异步电动机的电路参数。在本文中,使用了容易获得的电机制造商数据,其中提供了额定输出功率,额定端子电压,满载效率,满载功率因数,标称速度,极数和锁定转子电流。为了估计电机的参数,推导了电机的非线性数学方程,并在MATLAB中采用迭代高斯-赛德尔法求解。然后将识别的参数转移到电机的MATLAB/Simulink模型中,模拟其在星三角洲启动过程中的性能。通过将Simulink的结果与工业电能质量分析仪的实时测量结果进行比较,对参数的有效性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Review of Automatic Control
International Review of Automatic Control Engineering-Control and Systems Engineering
CiteScore
2.70
自引率
0.00%
发文量
17
期刊最新文献
Validation of the Functionality of an Industrial Network Based on RS-485 and Industrial Ethernet Protocols for Multivariable Processes Chattering Reduction on Low-Speed Indirect Field Oriented Control Induction Motor Using Second Order Sliding Mode Control Obstacle Avoidance System Using Artificial Neural Network and Fail-Safe PLC Enhanced Control of Overhead Crane System Using First-Order Sliding Mode Control and Extended Kalman Filter Observer Innovative Control of Two-Stage Grid-Connected Solar Inverter Based on Genetic Algorithm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1