Lucia Lazarowski, A. Simon, Sarah Krichbaum, C. Angle, Melissa Singletary, Paul Waggoner, Kelly Van Arsdale, Jason Barrow
{"title":"Generalization Across Acetone Peroxide Homemade Explosives by Detection Dogs","authors":"Lucia Lazarowski, A. Simon, Sarah Krichbaum, C. Angle, Melissa Singletary, Paul Waggoner, Kelly Van Arsdale, Jason Barrow","doi":"10.3389/frans.2021.797520","DOIUrl":null,"url":null,"abstract":"Effective explosives detection requires dogs to generalize their response to untrained variations of targets that are related to those with which they were trained. Previous research suggests that dogs tend to be highly specific to their trained odors, and are sensitive to alterations in odor profiles. Triacetone triperoxide (TATP) is an increasingly popular homemade explosive due to the widespread accessibility of starting materials. The large variety of reagent sources and production approaches yields high variability in deployed formulations. Whether dogs trained with pure forms of TATP generalize to other variations is unknown, representing a potentially significant security gap. In the current study, we tested dogs (n = 11) previously trained to detect pure TATP with four variants: diacetone diperoxide (DADP), a homologue often created as a TATP byproduct, and three different clandestine TATP formulations designed to emulate those used by terrorists or insurgents. On average, dogs detected each untrained variant at rates equivalent to the trained TATP (ps > 0.07), with individual variability in first-trial alerts for some of the variants. Chemical analyses paralleled the canine results, showing distinct similarities and differences. For the TATP samples, the laboratory-grade was the purest sample tested and did not contain DADP or the TATP homologue that the three clandestine versions showed in their respective headspace profiles. The headspace results showed that each sample could be clearly identified as TATP, yet they showed recognizable differences due to their individual syntheses. These findings suggest that training on pure TATP may be effective for generalization to untrained variants. Further research is necessary to identify factors that influence individual variation in generalization between dogs, as well as other explosives.","PeriodicalId":73063,"journal":{"name":"Frontiers in analytical science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in analytical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frans.2021.797520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Effective explosives detection requires dogs to generalize their response to untrained variations of targets that are related to those with which they were trained. Previous research suggests that dogs tend to be highly specific to their trained odors, and are sensitive to alterations in odor profiles. Triacetone triperoxide (TATP) is an increasingly popular homemade explosive due to the widespread accessibility of starting materials. The large variety of reagent sources and production approaches yields high variability in deployed formulations. Whether dogs trained with pure forms of TATP generalize to other variations is unknown, representing a potentially significant security gap. In the current study, we tested dogs (n = 11) previously trained to detect pure TATP with four variants: diacetone diperoxide (DADP), a homologue often created as a TATP byproduct, and three different clandestine TATP formulations designed to emulate those used by terrorists or insurgents. On average, dogs detected each untrained variant at rates equivalent to the trained TATP (ps > 0.07), with individual variability in first-trial alerts for some of the variants. Chemical analyses paralleled the canine results, showing distinct similarities and differences. For the TATP samples, the laboratory-grade was the purest sample tested and did not contain DADP or the TATP homologue that the three clandestine versions showed in their respective headspace profiles. The headspace results showed that each sample could be clearly identified as TATP, yet they showed recognizable differences due to their individual syntheses. These findings suggest that training on pure TATP may be effective for generalization to untrained variants. Further research is necessary to identify factors that influence individual variation in generalization between dogs, as well as other explosives.