Laura Carolina Rozo Hoyos, Juan Pablo Pulgarín González, Paula Andrea Morales Fandiño, Jonathan Gallego Londoño
{"title":"Wearable device intended for detection of fog episodes in Parkinson´s disease","authors":"Laura Carolina Rozo Hoyos, Juan Pablo Pulgarín González, Paula Andrea Morales Fandiño, Jonathan Gallego Londoño","doi":"10.14483/22484728.14422","DOIUrl":null,"url":null,"abstract":"The episodes of Freezing of Gait (FOG) are a recurring symptom in people suffering from advanced stages of Parkinson's disease (PD). These are severe occurrences because they may cause falls to the patients, generating further traumas and concussions. In order to solve this yet ineffectively treated issue, this article describes the research that developed a device capable of predicting freezing episodes. On this project a wearable device was developed, which was able to predict freezing episodes based on the calculation of a freezing index (FI) determined by the signals obtained from an inertial measurement unit (IMU). This device was tested in three Patients and signals corresponding to normal gait and simulated Parkinson gait were taken. The results showed that FI obtained from Parkinson gait were much higher than those from a normal gait, validating this parameter as a key aspect in FOG prediction. \n \n \n ","PeriodicalId":34191,"journal":{"name":"Vision Electronica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Electronica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/22484728.14422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The episodes of Freezing of Gait (FOG) are a recurring symptom in people suffering from advanced stages of Parkinson's disease (PD). These are severe occurrences because they may cause falls to the patients, generating further traumas and concussions. In order to solve this yet ineffectively treated issue, this article describes the research that developed a device capable of predicting freezing episodes. On this project a wearable device was developed, which was able to predict freezing episodes based on the calculation of a freezing index (FI) determined by the signals obtained from an inertial measurement unit (IMU). This device was tested in three Patients and signals corresponding to normal gait and simulated Parkinson gait were taken. The results showed that FI obtained from Parkinson gait were much higher than those from a normal gait, validating this parameter as a key aspect in FOG prediction.