Xiong Yaxuan, W. Huixiang, Wang Zhenyu, W. Yuting, X. Qian, Wang Gang, Li Chuan, Ding Yulong, Ma Chongfang
{"title":"Insights into the Enhancement Mechanisms of Molten Salt Nanofluids","authors":"Xiong Yaxuan, W. Huixiang, Wang Zhenyu, W. Yuting, X. Qian, Wang Gang, Li Chuan, Ding Yulong, Ma Chongfang","doi":"10.1155/2022/4912922","DOIUrl":null,"url":null,"abstract":"The addition of nanomaterials to molten salts can significantly improve their thermal performance. To explore the enhancement mechanisms, this work prepared carbonate salt nanofluids with binary carbonate as base salt and 20 nm SiO2 and 20 nm MgO nanoparticles as additives by the commonly used aqueous solution method. Then, the key performance and micromorphology of the carbonate salt nanofluids are characterized by differential scanning calorimetry, thermal gravimetric analysis, laser flash analysis, and micromorphology analysis. Results showed that the 20 nm SiO2 nanomaterials instead of the 20 nm MgO nanomaterials exerted higher effects on latent heat while the 20 nm MgO nanomaterials instead of the 20 nm SiO2 nanomaterials exerted higher effects on the sensible heat, thermal conductivity, and high-temperature stability of carbonated salt. In addition, different nanostructures were observed in SiO2-based and MgO-based molten salt nanofluids, respectively. Innovatively, formation mechanisms of molten salt nanofluids were proposed based on cloud nuclei to explain the different enhancements in this work.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/4912922","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The addition of nanomaterials to molten salts can significantly improve their thermal performance. To explore the enhancement mechanisms, this work prepared carbonate salt nanofluids with binary carbonate as base salt and 20 nm SiO2 and 20 nm MgO nanoparticles as additives by the commonly used aqueous solution method. Then, the key performance and micromorphology of the carbonate salt nanofluids are characterized by differential scanning calorimetry, thermal gravimetric analysis, laser flash analysis, and micromorphology analysis. Results showed that the 20 nm SiO2 nanomaterials instead of the 20 nm MgO nanomaterials exerted higher effects on latent heat while the 20 nm MgO nanomaterials instead of the 20 nm SiO2 nanomaterials exerted higher effects on the sensible heat, thermal conductivity, and high-temperature stability of carbonated salt. In addition, different nanostructures were observed in SiO2-based and MgO-based molten salt nanofluids, respectively. Innovatively, formation mechanisms of molten salt nanofluids were proposed based on cloud nuclei to explain the different enhancements in this work.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells