Generalized Class of Variance Estimators under Two-Phase Sampling for Partial Information Case

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2019-04-26 DOI:10.1285/I20705948V12N1P44
Amber Asghar, A. Sanaullah, M. Hanif
{"title":"Generalized Class of Variance Estimators under Two-Phase Sampling for Partial Information Case","authors":"Amber Asghar, A. Sanaullah, M. Hanif","doi":"10.1285/I20705948V12N1P44","DOIUrl":null,"url":null,"abstract":"This paper considers a class of generalized estimators for estimating the unknown population variance using two auxiliary variables when mean of one auxiliary variable may not be available. The expressions for bias and mean square error of the proposed estimators are obtained up to the first order of approximation. Conditions for which the proposed generalized estimator is more efficient than the existing estimators have been derived. Both empirical and simulation studies have also been carried out to analyze the efficiency of the proposed estimators with some existing estimators.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N1P44","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N1P44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers a class of generalized estimators for estimating the unknown population variance using two auxiliary variables when mean of one auxiliary variable may not be available. The expressions for bias and mean square error of the proposed estimators are obtained up to the first order of approximation. Conditions for which the proposed generalized estimator is more efficient than the existing estimators have been derived. Both empirical and simulation studies have also been carried out to analyze the efficiency of the proposed estimators with some existing estimators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分信息两阶段抽样下方差估计的广义类
当一个辅助变量的均值可能不可用时,本文考虑了一类使用两个辅助变量估计未知总体方差的广义估计量。给出了估计量的偏差和均方误差的一阶近似表达式。导出了所提出的广义估计量比现有估计量更有效的条件。还进行了实证和模拟研究,以分析所提出的估计量与一些现有估计量的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1