Edge Detection Method Driven by Knowledge-Based Neighborhood Rules

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2023-01-01 DOI:10.46604/ijeti.2023.9710
Yavuz Çapkan, H. Altun, C. Fidan
{"title":"Edge Detection Method Driven by Knowledge-Based Neighborhood Rules","authors":"Yavuz Çapkan, H. Altun, C. Fidan","doi":"10.46604/ijeti.2023.9710","DOIUrl":null,"url":null,"abstract":"Edge detection is a fundamental process, and therefore there are still demands to improve its efficiency and computational complexity. This study proposes a knowledge-based edge detection method to meet this requirement by introducing a set of knowledge-based rules. The methodology to derive the rules is based on the observed continuity properties and the neighborhood characteristics of the edge pixels, which are expressed as simple arithmetical operations to improve computational complexity. The results show that the method has an advantage over the gradient-based methods in terms of performance and computational load. It is appropriately four times faster than Canny method and shows superior performance compared to the gradient-based methods in general. Furthermore, the proposed method provides robustness to effectively identify edges at the corners. Due to its light computational requirement and inherent parallelization properties, the method would be also suitable for hardware implementation on field-programmable gate arrays (FPGA).","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.9710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Edge detection is a fundamental process, and therefore there are still demands to improve its efficiency and computational complexity. This study proposes a knowledge-based edge detection method to meet this requirement by introducing a set of knowledge-based rules. The methodology to derive the rules is based on the observed continuity properties and the neighborhood characteristics of the edge pixels, which are expressed as simple arithmetical operations to improve computational complexity. The results show that the method has an advantage over the gradient-based methods in terms of performance and computational load. It is appropriately four times faster than Canny method and shows superior performance compared to the gradient-based methods in general. Furthermore, the proposed method provides robustness to effectively identify edges at the corners. Due to its light computational requirement and inherent parallelization properties, the method would be also suitable for hardware implementation on field-programmable gate arrays (FPGA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于知识邻域规则驱动的边缘检测方法
边缘检测是一个基本过程,因此仍然需要提高其效率和计算复杂性。本研究提出了一种基于知识的边缘检测方法,通过引入一组基于知识的规则来满足这一要求。导出规则的方法基于观察到的边缘像素的连续性特性和邻域特性,这些特性被表示为简单的算术运算,以提高计算复杂性。结果表明,该方法在性能和计算量方面优于基于梯度的方法。它比Canny方法快四倍,并且与一般基于梯度的方法相比显示出优越的性能。此外,所提出的方法提供了鲁棒性,可以有效地识别拐角处的边缘。由于其计算量小和固有的并行性,该方法也适用于现场可编程门阵列(FPGA)的硬件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
Domain Adaptation for Roasted Coffee Bean Quality Inspection Design of Deep Learning Acoustic Sonar Receiver with Temporal/ Spatial Underwater Channel Feature Extraction Capability Grid Operation and Inspection Resource Scheduling Based on an Adaptive Genetic Algorithm Closed-House Biofilter Design and Performance Evaluation for Mitigating Environmental Odor Disturbances Analysis of Drain-Induced Barrier Lowering for Gate-All-Around FET with Ferroelectric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1