Perbandingan Waktu Respon Aplikasi Database NoSQL Elasticsearch dan MongoDB pada Pengujian Operasi CRUD

Theresia Liana Sinaga, Novrido Charibaldi, N. Cahyana
{"title":"Perbandingan Waktu Respon Aplikasi Database NoSQL Elasticsearch dan MongoDB pada Pengujian Operasi CRUD","authors":"Theresia Liana Sinaga, Novrido Charibaldi, N. Cahyana","doi":"10.14421/jiska.2023.8.1.22-35","DOIUrl":null,"url":null,"abstract":"Currently, humans live in an era of data oceans, where the amount of data production is increasing from time to time, which is followed by severe challenges in terms of processing, storing, and analyzing data, especially big data. The increase in the number of large data production can affect the speed of access to the database, effectiveness, and speed of response time in the data processing. Relational databases have been the leading model for data storage, analysis, processing, and retrieval for more than forty years. However, due to the increasing need for large-scale data storage, the scalability and performance of a data processing system, as well as the constant growth of the amount of data, another alternative to databases emerged, namely NoSQL technology. Based on previous studies regarding the comparison of response time and database performance, the average concludes that NoSQL performance is more effective and efficient than relational databases. Based on the implementation and testing, it can be concluded that the NoSQL database application MongoDB is proven to be superior in every command of CRUD tested compared to the Elasticsearch NoSQL database application, where in testing the create data command with a JSON file, the MongoDB database application is 42.5 times faster than the Elasticsearch database application. In testing the command to create data into a database containing different amounts of data, the MongoDB database application is 333.9 times faster than the average response time of the Elasticsearch database application. In testing the read command for data in a database containing different amounts of data, the MongoDB database application is 35.5 times faster than the Elasticsearch database application. In testing the update operation of data in a database containing different amounts of data, the MongoDB database application is 9.8 times faster than the Elasticsearch database application. in testing the delete operation of data in a database containing different amounts of data, the MongoDB database application is 58.9 times faster than the Elasticsearch database application.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2023.8.1.22-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, humans live in an era of data oceans, where the amount of data production is increasing from time to time, which is followed by severe challenges in terms of processing, storing, and analyzing data, especially big data. The increase in the number of large data production can affect the speed of access to the database, effectiveness, and speed of response time in the data processing. Relational databases have been the leading model for data storage, analysis, processing, and retrieval for more than forty years. However, due to the increasing need for large-scale data storage, the scalability and performance of a data processing system, as well as the constant growth of the amount of data, another alternative to databases emerged, namely NoSQL technology. Based on previous studies regarding the comparison of response time and database performance, the average concludes that NoSQL performance is more effective and efficient than relational databases. Based on the implementation and testing, it can be concluded that the NoSQL database application MongoDB is proven to be superior in every command of CRUD tested compared to the Elasticsearch NoSQL database application, where in testing the create data command with a JSON file, the MongoDB database application is 42.5 times faster than the Elasticsearch database application. In testing the command to create data into a database containing different amounts of data, the MongoDB database application is 333.9 times faster than the average response time of the Elasticsearch database application. In testing the read command for data in a database containing different amounts of data, the MongoDB database application is 35.5 times faster than the Elasticsearch database application. In testing the update operation of data in a database containing different amounts of data, the MongoDB database application is 9.8 times faster than the Elasticsearch database application. in testing the delete operation of data in a database containing different amounts of data, the MongoDB database application is 58.9 times faster than the Elasticsearch database application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NoSQL Elasticsearch和MongoDB数据库应用程序在CRUD操作测试中的响应时间比较
当前,人类生活在数据海洋时代,数据产生量不断增加,随之而来的是数据处理、数据存储、数据分析等方面的严峻挑战,尤其是大数据。大数据生产数量的增加会影响数据处理中访问数据库的速度、有效性和响应时间的速度。40多年来,关系数据库一直是数据存储、分析、处理和检索的主要模型。然而,由于对大规模数据存储的需求不断增加,数据处理系统的可扩展性和性能以及数据量的不断增长,出现了数据库的另一种替代方案,即NoSQL技术。根据之前关于响应时间和数据库性能比较的研究,平均得出NoSQL性能比关系数据库更有效和高效的结论。通过实现和测试,可以得出结论,NoSQL数据库应用MongoDB在CRUD测试的每个命令中都优于Elasticsearch NoSQL数据库应用,其中在使用JSON文件测试create data命令时,MongoDB数据库应用比Elasticsearch数据库应用快42.5倍。在测试将数据创建到包含不同数据量的数据库的命令时,MongoDB数据库应用程序比Elasticsearch数据库应用程序的平均响应时间快333.9倍。在测试一个包含不同数据量的数据库中读取数据的命令时,MongoDB数据库应用程序比Elasticsearch数据库应用程序快35.5倍。在测试包含不同数据量的数据库中数据的更新操作时,MongoDB数据库应用程序比Elasticsearch数据库应用程序快9.8倍。在测试不同数据量的数据库中数据的删除操作时,MongoDB数据库应用程序比Elasticsearch数据库应用程序快58.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1