Shape optimization of tall buildings cross‐section: Balancing profit and aeroelastic performance

IF 1.8 3区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Structural Design of Tall and Special Buildings Pub Date : 2022-09-01 DOI:10.1002/tal.1982
F. Nieto, M. Cid Montoya, S. Hernández
{"title":"Shape optimization of tall buildings cross‐section: Balancing profit and aeroelastic performance","authors":"F. Nieto, M. Cid Montoya, S. Hernández","doi":"10.1002/tal.1982","DOIUrl":null,"url":null,"abstract":"Shape optimization is an effective tool to improve the aerodynamic performance of tall buildings by introducing minor modifications to the original project. Nevertheless, economic criteria demand efficient cross sections aiming at maximizing the building's profitability. These two contradictory criteria are commonly handled by adopting multi‐objective optimization approaches seeking the definition of Pareto fronts. However, the aerodynamic nonlinear features of low‐aspect‐ratio cross sections typically adopted in architectural practice can cause wind‐induced acceleration response surfaces over the considered design domain with multiple local minima that eventually lead to discontinuous Pareto fronts with non‐convex regions. This study delves into this problem and proposes a design framework that effectively combines the reduced basis method with multi‐objective optimization techniques to carry out the aerodynamic shape optimization using surrogates trained with CFD simulations. The ability of the optimization strategy to properly define the non‐convex regions of discontinuous Pareto fronts is successfully leveraged by adopting the weighted min–max method.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1982","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Shape optimization is an effective tool to improve the aerodynamic performance of tall buildings by introducing minor modifications to the original project. Nevertheless, economic criteria demand efficient cross sections aiming at maximizing the building's profitability. These two contradictory criteria are commonly handled by adopting multi‐objective optimization approaches seeking the definition of Pareto fronts. However, the aerodynamic nonlinear features of low‐aspect‐ratio cross sections typically adopted in architectural practice can cause wind‐induced acceleration response surfaces over the considered design domain with multiple local minima that eventually lead to discontinuous Pareto fronts with non‐convex regions. This study delves into this problem and proposes a design framework that effectively combines the reduced basis method with multi‐objective optimization techniques to carry out the aerodynamic shape optimization using surrogates trained with CFD simulations. The ability of the optimization strategy to properly define the non‐convex regions of discontinuous Pareto fronts is successfully leveraged by adopting the weighted min–max method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高层建筑截面的形状优化:平衡利润和气动弹性性能
形状优化是通过对原始项目进行微小修改来提高高层建筑空气动力学性能的有效工具。然而,经济标准要求有效的横截面,以最大限度地提高建筑的盈利能力。这两个相互矛盾的标准通常通过采用多目标优化方法来处理,以寻求Pareto前沿的定义。然而,建筑实践中通常采用的低纵横比横截面的空气动力学非线性特征可能会导致所考虑的设计域上的风诱导加速度响应面具有多个局部极小值,最终导致具有非凸区域的不连续Pareto前沿。本研究深入研究了这一问题,并提出了一个设计框架,该框架有效地将简化基方法与多目标优化技术相结合,以使用CFD模拟训练的代理进行空气动力学形状优化。通过采用加权最小-最大方法,成功地利用了优化策略正确定义不连续Pareto前沿的非凸区域的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
4.20%
发文量
83
审稿时长
6-12 weeks
期刊介绍: The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this. The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics. However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.
期刊最新文献
Implementation of real‐time hybrid simulation based on Python‐graphics processing unit computing Shape optimization of a corner‐recessed square tall building to reduce mean wind pressure using a multi‐objective genetic algorithm A multi‐objective structural optimization method for serviceability design of tall buildings Effective width estimation of flanged reinforced concrete shear walls Effect of aspect ratio on the aerodynamic performance and correlation of square section building exposed to twisted wind profile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1