Mountain gazelle optimisation-based 3DOF-FOPID-virtual inertia controller for frequency control of low inertia microgrid

IF 1.6 Q4 ENERGY & FUELS IET Energy Systems Integration Pub Date : 2023-08-18 DOI:10.1049/esi2.12111
Swapan Santra, Mala De
{"title":"Mountain gazelle optimisation-based 3DOF-FOPID-virtual inertia controller for frequency control of low inertia microgrid","authors":"Swapan Santra,&nbsp;Mala De","doi":"10.1049/esi2.12111","DOIUrl":null,"url":null,"abstract":"<p>The primary objective of the authors is to design a new robust and improved virtual inertia controller (VIC) for renewable energy dominated inverter interfaced low inertia microgrid (LIMG). Increasing penetration of inertia-less renewable generation in microgrid leads to increased frequency deviation during and after a disturbance. To improve the frequency response of the LIMG, conventional VIC added with different second stage and third stage controllers are proposed in existing works. Higher degree-of-freedom (DOF) PID controller synchronised with fractional-order (FO) operators are used with conventional VIC controllers. These controllers work in addition with conventional VIC and the multi-stage controllers make the system more complex. To reduce the number of controller stages and, subsequently, reduce cost and complexity of the system, a single stage 3DOF-FOPID controller is proposed to mitigate the frequency deviation after a disturbance in a LIMG. Performance of the proposed single stage controller is compared with that of the existing controllers to establish the advantages of the proposed controller. The parameters of the proposed 3DOF-FOPID controller are optimised by Mountain Gazelle Optimsation. The robustness of this controller is also tested for random load fluctuation and renewable power variations in presence of system non-linearities.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12111","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of the authors is to design a new robust and improved virtual inertia controller (VIC) for renewable energy dominated inverter interfaced low inertia microgrid (LIMG). Increasing penetration of inertia-less renewable generation in microgrid leads to increased frequency deviation during and after a disturbance. To improve the frequency response of the LIMG, conventional VIC added with different second stage and third stage controllers are proposed in existing works. Higher degree-of-freedom (DOF) PID controller synchronised with fractional-order (FO) operators are used with conventional VIC controllers. These controllers work in addition with conventional VIC and the multi-stage controllers make the system more complex. To reduce the number of controller stages and, subsequently, reduce cost and complexity of the system, a single stage 3DOF-FOPID controller is proposed to mitigate the frequency deviation after a disturbance in a LIMG. Performance of the proposed single stage controller is compared with that of the existing controllers to establish the advantages of the proposed controller. The parameters of the proposed 3DOF-FOPID controller are optimised by Mountain Gazelle Optimsation. The robustness of this controller is also tested for random load fluctuation and renewable power variations in presence of system non-linearities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于山羚羊优化的3DOF‐FOPID‐虚拟惯性控制器用于低惯性微电网的频率控制
作者的主要目标是为可再生能源主导的逆变器接口低惯性微电网(LIMG)设计一种新的鲁棒和改进的虚拟惯性控制器(VIC)。无惯性可再生能源发电在微电网中的渗透率不断增加,导致扰动期间和扰动后频率偏差增加。为了提高LIMG的频率响应,现有工作中提出了添加不同第二级和第三级控制器的传统VIC。与分数阶(FO)算子同步的高自由度(DOF)PID控制器与传统的VIC控制器一起使用。这些控制器与传统的VIC一起工作,多级控制器使系统更加复杂。为了减少控制器级的数量,从而降低系统的成本和复杂性,提出了一种单级3DOF‐FOPID控制器来减轻LIMG中扰动后的频率偏差。将所提出的单级控制器的性能与现有控制器的性能进行比较,以确定所提出的控制器的优点。所提出的3DOF‐FOPID控制器的参数通过山瞪羚优化进行了优化。该控制器的鲁棒性还针对存在系统非线性的随机负载波动和可再生电力变化进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
期刊最新文献
Experimental and model analysis of the thermoelectric characteristics of serial arc in prismatic lithium‐ion batteries Low‐carbon economic operation of multi‐energy microgrid based on multi‐level robust optimisation Anti‐interference lithium‐ion battery intelligent perception for thermal fault detection and localization A reinforcement learning method for two‐layer shipboard real‐time energy management considering battery state estimation Estimation and prediction method of lithium battery state of health based on ridge regression and gated recurrent unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1