Imputation for estimating the population mean in the presence of nonresponse, with application to fine particle density in Bangkok

IF 1.4 3区 社会学 Q3 DEMOGRAPHY Mathematical Population Studies Pub Date : 2022-01-19 DOI:10.1080/08898480.2021.1997466
Kanisa Chodjuntug, Nuanpan Lawson
{"title":"Imputation for estimating the population mean in the presence of nonresponse, with application to fine particle density in Bangkok","authors":"Kanisa Chodjuntug, Nuanpan Lawson","doi":"10.1080/08898480.2021.1997466","DOIUrl":null,"url":null,"abstract":"ABSTRACT Air pollution in Bangkok, Thailand, is mainly due to fine particles emitted in exhaust gases. However, many data on fine particle concentrations are missing, a fact which may bias the statistics. Exponential-type imputation minimizing the mean square error allows for estimating the missing values of these concentrations and provides an estimate with smaller mean square error of the mean concentration levels. The bias and mean square error of the proposed estimator are calculated. Simulation shows that the relative efficiency is 5% higher up to 50 observations, 12% higher for 100 observations, and 25% higher for 200 observations. Application to the measurement of fine particle concentration in Bangkok yields a mean square error of 0.73 micrograms per cubic meter squared, for a mean level of 47.40 micrograms per cubic meter, while the mean square error by the best alternative estimator selected is 0.90 micrograms per cubic meter squared, for a mean level of 48.20 micrograms per cubic meter.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"29 1","pages":"204 - 225"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2021.1997466","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT Air pollution in Bangkok, Thailand, is mainly due to fine particles emitted in exhaust gases. However, many data on fine particle concentrations are missing, a fact which may bias the statistics. Exponential-type imputation minimizing the mean square error allows for estimating the missing values of these concentrations and provides an estimate with smaller mean square error of the mean concentration levels. The bias and mean square error of the proposed estimator are calculated. Simulation shows that the relative efficiency is 5% higher up to 50 observations, 12% higher for 100 observations, and 25% higher for 200 observations. Application to the measurement of fine particle concentration in Bangkok yields a mean square error of 0.73 micrograms per cubic meter squared, for a mean level of 47.40 micrograms per cubic meter, while the mean square error by the best alternative estimator selected is 0.90 micrograms per cubic meter squared, for a mean level of 48.20 micrograms per cubic meter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在无反应的情况下估计群体平均值的推断,并应用于曼谷的细颗粒密度
摘要泰国曼谷的空气污染主要是由废气中排放的细颗粒物造成的。然而,许多关于细颗粒浓度的数据缺失,这一事实可能会使统计数据产生偏差。最小化均方误差的指数型插补允许估计这些浓度的缺失值,并提供平均浓度水平的均方误差较小的估计值。计算了该估计器的偏差和均方误差。模拟表明,在50次观测中,相对效率提高了5%,在100次观测中提高了12%,在200次观测中增加了25%。应用于曼谷细颗粒物浓度的测量,平均水平为47.40微克/立方米,均方误差为0.73微克/立方米平方,而选择的最佳替代估算器的均方误差是0.90微克/立方米立方,平均水平是48.20微克/立方米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
期刊最新文献
Researching algorithm awareness: methodological approaches to investigate how people perceive, know, and interact with algorithms Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data Estimating the structure by age and sex of the US sexually active population Optimizing criterion for the upper limit of the signal response of brain neurons Optimal estimators of the population mean of a skewed distribution using auxiliary variables in median ranked-set sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1