{"title":"Tsunami evacuation sites in the northern Sumatra (Indonesia) determined based on the updated tsunami numerical simulations","authors":"Abdi Jihad , Umar Muksin , Syamsidik , Marwan Ramli , Vrieslend Haris Banyunegoro , Andrean V.H. Simanjuntak , Andi Azhar Rusdin","doi":"10.1016/j.pdisas.2023.100286","DOIUrl":null,"url":null,"abstract":"<div><p>In many parts of tsunami prone areas, providing tsunami evacuation structures is often regarded as costly and difficult to manage, whereas several existing building and hills can be introduced as tsunami evacuation sites. This research intends to introduce practical and scientific methods in assessing the feasibility of hills and buildings for vertical tsunami evacuation facilities. Here, the aim is to combine tsunami numerical simulations and field assessment to determine suitable hills and buildings as vertical tsunami evacuation facilities in Calang and Banda Aceh (Indonesia) that were severely destroyed by the 2004 Indian Ocean tsunami. The numerical simulations were based on the latest condition of land cover of the study area, which has changed significantly in the last 20 years. Using the newly updated land cover, the tsunami model reveals that the tsunami estimated maximum height is 13 m in Calang. The existing buildings and hills, with an altitude higher than tsunami heights, which can be reached within 30 min (15 min less than the minimum tsunami arrival times) from the centres of the villages, are proposed as tsunami evacuation sites. In Banda Aceh and Calang, 10 public buildings, 13 mosques, and 4 hills are proposed as alternative escape sites.</p></div>","PeriodicalId":52341,"journal":{"name":"Progress in Disaster Science","volume":"18 ","pages":"Article 100286"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Disaster Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590061723000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In many parts of tsunami prone areas, providing tsunami evacuation structures is often regarded as costly and difficult to manage, whereas several existing building and hills can be introduced as tsunami evacuation sites. This research intends to introduce practical and scientific methods in assessing the feasibility of hills and buildings for vertical tsunami evacuation facilities. Here, the aim is to combine tsunami numerical simulations and field assessment to determine suitable hills and buildings as vertical tsunami evacuation facilities in Calang and Banda Aceh (Indonesia) that were severely destroyed by the 2004 Indian Ocean tsunami. The numerical simulations were based on the latest condition of land cover of the study area, which has changed significantly in the last 20 years. Using the newly updated land cover, the tsunami model reveals that the tsunami estimated maximum height is 13 m in Calang. The existing buildings and hills, with an altitude higher than tsunami heights, which can be reached within 30 min (15 min less than the minimum tsunami arrival times) from the centres of the villages, are proposed as tsunami evacuation sites. In Banda Aceh and Calang, 10 public buildings, 13 mosques, and 4 hills are proposed as alternative escape sites.
期刊介绍:
Progress in Disaster Science is a Gold Open Access journal focusing on integrating research and policy in disaster research, and publishes original research papers and invited viewpoint articles on disaster risk reduction; response; emergency management and recovery.
A key part of the Journal's Publication output will see key experts invited to assess and comment on the current trends in disaster research, as well as highlight key papers.