Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate SeNPs and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway
Hongyan Li , Yifan Wang , Yan Chen , Shuxin Wang , Yifan Zhao , Jinyuan Sun
{"title":"Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate SeNPs and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway","authors":"Hongyan Li , Yifan Wang , Yan Chen , Shuxin Wang , Yifan Zhao , Jinyuan Sun","doi":"10.1080/07328303.2022.2105860","DOIUrl":null,"url":null,"abstract":"<div><p>Arabinogalactan (ICPA) was isolated from the medicinal plant <em>Ixeris chinensis</em> (Thunb.) Nakai, and was used as the reducing agent to stabilize selenium nanoparticles (SeNPs). ICPA-decorated SeNPs (ICPA-SeNPs) were synthesized with Na<sub>2</sub>SeO<sub>3</sub> and ICPA, and their average diameter was 82.6<!--> <!-->±<!--> <!-->2.5 nm. ICPA-SeNPs had good dispersity in phosphate-buffered saline (PBS) with a hydrodynamic size of 156.2<!--> <!-->±<!--> <!-->2.8 nm. They were stable in PBS solution with a zeta potential of −24.8<!--> <!-->±<!--> <!-->0.6 mV. The anti-hepatoma activity of ICPA-SeNPs was investigated <em>in vitro</em>. ICPA-SeNPs significantly suppressed the growth of SMMC-7721 and HepG2 hepatoma cells. They entered SMMC-7721 cells via energy- and caveolae-dependent endocytosis. ICPA-SeNPs were able to increase reactive oxygen species levels, reduce mitochondrial membrane potential, and increase caspase-3 expression in SMMC-7721 cells, which led to the apoptosis of SMMC-7721 cells. They also arrested the cell cycle of SMMC-7721 cells in the S phase. These findings indicate that ICPA could enhance the stability of SeNPs and inhibit SMMC-7721 cell proliferation via the mitochondrial pathway. ICPA-SeNPs could be developed as an antitumor agent for hepatocellular carcinoma treatment.</p></div>","PeriodicalId":15311,"journal":{"name":"Journal of Carbohydrate Chemistry","volume":"41 5","pages":"Pages 329-345"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carbohydrate Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0732830323000010","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arabinogalactan (ICPA) was isolated from the medicinal plant Ixeris chinensis (Thunb.) Nakai, and was used as the reducing agent to stabilize selenium nanoparticles (SeNPs). ICPA-decorated SeNPs (ICPA-SeNPs) were synthesized with Na2SeO3 and ICPA, and their average diameter was 82.6 ± 2.5 nm. ICPA-SeNPs had good dispersity in phosphate-buffered saline (PBS) with a hydrodynamic size of 156.2 ± 2.8 nm. They were stable in PBS solution with a zeta potential of −24.8 ± 0.6 mV. The anti-hepatoma activity of ICPA-SeNPs was investigated in vitro. ICPA-SeNPs significantly suppressed the growth of SMMC-7721 and HepG2 hepatoma cells. They entered SMMC-7721 cells via energy- and caveolae-dependent endocytosis. ICPA-SeNPs were able to increase reactive oxygen species levels, reduce mitochondrial membrane potential, and increase caspase-3 expression in SMMC-7721 cells, which led to the apoptosis of SMMC-7721 cells. They also arrested the cell cycle of SMMC-7721 cells in the S phase. These findings indicate that ICPA could enhance the stability of SeNPs and inhibit SMMC-7721 cell proliferation via the mitochondrial pathway. ICPA-SeNPs could be developed as an antitumor agent for hepatocellular carcinoma treatment.
期刊介绍:
The Journal of Carbohydrate Chemistry serves as an international forum for research advances involving the chemistry and biology of carbohydrates. The following aspects are considered to fall within the scope of this journal:
-novel synthetic methods involving carbohydrates, oligosaccharides, and glycoconjugates-
the use of chemical methods to address aspects of glycobiology-
spectroscopic and crystallographic structure studies of carbohydrates-
computational and molecular modeling studies-
physicochemical studies involving carbohydrates and the chemistry and biochemistry of carbohydrate polymers.