An efficient exponential estimator of the mean under stratified random sampling

IF 1.4 3区 社会学 Q3 DEMOGRAPHY Mathematical Population Studies Pub Date : 2020-06-16 DOI:10.1080/08898480.2020.1767420
T. Zaman
{"title":"An efficient exponential estimator of the mean under stratified random sampling","authors":"T. Zaman","doi":"10.1080/08898480.2020.1767420","DOIUrl":null,"url":null,"abstract":"ABSTRACT Stratification of population is a probability sampling design used to increase the precision of estimation. An efficient exponential ratio estimator allows estimating the population mean in stratified random sampling using an auxiliary variable. Its expected bias, expected mean square error, and minimum mean square error are expressed. The conditions for which the estimator is more efficient are obtained. The proposed estimators under stratified random sampling have a lower mean square error than the ratio and the exponential estimators.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"28 1","pages":"104 - 121"},"PeriodicalIF":1.4000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2020.1767420","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2020.1767420","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 27

Abstract

ABSTRACT Stratification of population is a probability sampling design used to increase the precision of estimation. An efficient exponential ratio estimator allows estimating the population mean in stratified random sampling using an auxiliary variable. Its expected bias, expected mean square error, and minimum mean square error are expressed. The conditions for which the estimator is more efficient are obtained. The proposed estimators under stratified random sampling have a lower mean square error than the ratio and the exponential estimators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分层随机抽样下均值的有效指数估计
人口分层是一种概率抽样设计,用于提高估计精度。有效的指数比率估计器允许使用辅助变量在分层随机抽样中估计总体平均值。表达了它的期望偏差、期望均方误差和最小均方误差。获得了估计器更有效的条件。在分层随机抽样下,所提出的估计量具有比比率和指数估计量更低的均方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
期刊最新文献
Researching algorithm awareness: methodological approaches to investigate how people perceive, know, and interact with algorithms Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data Estimating the structure by age and sex of the US sexually active population Optimizing criterion for the upper limit of the signal response of brain neurons Optimal estimators of the population mean of a skewed distribution using auxiliary variables in median ranked-set sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1