Enhanced performance of dye-sensitized solar cell with thermally stable natural dye-assisted TiO2/MnO2 bilayer-assembled photoanode

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2020-11-23 DOI:10.1007/s40243-020-00185-3
Shyamal Datta, Argha Dey, Nayan Ranjan Singha, Subhasis Roy
{"title":"Enhanced performance of dye-sensitized solar cell with thermally stable natural dye-assisted TiO2/MnO2 bilayer-assembled photoanode","authors":"Shyamal Datta,&nbsp;Argha Dey,&nbsp;Nayan Ranjan Singha,&nbsp;Subhasis Roy","doi":"10.1007/s40243-020-00185-3","DOIUrl":null,"url":null,"abstract":"<p>This study reports the performance analysis of an organic dye-sensitized solar cell (DSSC), introducing MnO<sub>2</sub> as an electron transport layer in TiO<sub>2</sub>/MnO<sub>2</sub> bilayer assembly. The DSSCs have been fabricated using TiO<sub>2</sub> and TiO<sub>2</sub>/MnO<sub>2</sub> layer-by-layer architecture films onto fluorine-doped tin oxide (FTO) glass and sensitized with natural dye extracted from <i>Malvaviscus penduliflorus</i> flower in ethanol medium. The counter electrode was prepared to layer copper powder containing paste onto FTO's conductive side by the doctor's blade method. The optical, morphological, and structural properties of photoanodes were explored via ultraviolet–visible, field emission scanning electron microscopy, and X-ray diffraction analyses. Moreover, dye complexity and thermostability of dyes were characterized via Fourier-transform infrared spectroscopy and thermogravimetric analyses. The iodide/triiodide (i.e., <i>I</i><sup>?</sup>/<i>I</i><sub>3</sub><sup>?</sup>) redox couple of electrolyte solution was employed as a charge transport medium between the electrodes. Finally, photoanode and counter electrode sandwiches were assembled to envisage the photovoltaic performance potential under simulated AM 1.5G solar illumination using 100 mW cm<sup>–2</sup> light intensity. The as-fabricated DSSC comprising TiO<sub>2</sub>/MnO<sub>2</sub> bilayer assembly exhibited 6.02?mA?cm<sup>–2</sup> short circuit current density (<i>J</i><sub>sc</sub>), 0.38?V open-circuit voltage (<i>V</i><sub>oc</sub>), 40.38% fill factor, and 0.92% conversion efficiency, which is about 200% higher compared to the assembly devoid of MnO<sub>2</sub> layer.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"9 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-020-00185-3","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-020-00185-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

Abstract

This study reports the performance analysis of an organic dye-sensitized solar cell (DSSC), introducing MnO2 as an electron transport layer in TiO2/MnO2 bilayer assembly. The DSSCs have been fabricated using TiO2 and TiO2/MnO2 layer-by-layer architecture films onto fluorine-doped tin oxide (FTO) glass and sensitized with natural dye extracted from Malvaviscus penduliflorus flower in ethanol medium. The counter electrode was prepared to layer copper powder containing paste onto FTO's conductive side by the doctor's blade method. The optical, morphological, and structural properties of photoanodes were explored via ultraviolet–visible, field emission scanning electron microscopy, and X-ray diffraction analyses. Moreover, dye complexity and thermostability of dyes were characterized via Fourier-transform infrared spectroscopy and thermogravimetric analyses. The iodide/triiodide (i.e., I?/I3?) redox couple of electrolyte solution was employed as a charge transport medium between the electrodes. Finally, photoanode and counter electrode sandwiches were assembled to envisage the photovoltaic performance potential under simulated AM 1.5G solar illumination using 100 mW cm–2 light intensity. The as-fabricated DSSC comprising TiO2/MnO2 bilayer assembly exhibited 6.02?mA?cm–2 short circuit current density (Jsc), 0.38?V open-circuit voltage (Voc), 40.38% fill factor, and 0.92% conversion efficiency, which is about 200% higher compared to the assembly devoid of MnO2 layer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热稳定天然染料辅助TiO2/MnO2双分子层组装光阳极提高染料敏化太阳能电池性能
本研究报道了一种有机染料敏化太阳能电池(DSSC)的性能分析,并在TiO2/MnO2双层组件中引入二氧化锰作为电子传输层。在氟掺杂氧化锡(FTO)玻璃表面采用TiO2和TiO2/MnO2层层结构膜制备DSSCs,并在乙醇培养基中用从垂花中提取的天然染料敏化。用医生刀法在FTO的导电侧制备了含糊状铜粉的对电极。通过紫外可见、场发射扫描电子显微镜和x射线衍射分析研究了光阳极的光学、形态和结构特性。通过红外光谱和热重分析对染料的复杂度和热稳定性进行了表征。采用碘/三碘(即I /I3)氧化还原对电解质溶液作为电极间的电荷输运介质。最后,组装光阳极和反电极三明治,设想在100mw cm-2光强的模拟AM 1.5G太阳能照明下的光伏性能潜力。由TiO2/MnO2双分子层组装而成的DSSC具有6.02 mA?cm-2短路电流密度(Jsc), 0.38?V开路电压(Voc),填充系数40.38%,转换效率0.92%,与没有MnO2层的组件相比提高了约200%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Novel hole transport materials of pyrogallol-sulfonamide hybrid: synthesis, optical, electrochemical properties and molecular modelling for perovskite solar cells Investigation of semiconductor to metallic transitions of perovskite CsGeCl3 material through induced pressure: a DFT calculation for photovoltaic and optoelectronic applications Mg(BH4)2-CH3NH2BH3@MgO solid state electrolyte for magnesium batteries Biodiesel synthesis from low cost biomass wastes and its cost assessment inducing process optimization Sustainable construction: the use of cork material in the building industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1