Dimensional discussion of traction force vector on ball/raceway interface and study of bearing dynamic behavior

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Tribology-transactions of The Asme Pub Date : 2023-04-20 DOI:10.1115/1.4062375
Shuaijun Ma, Yanjing Yin, Linbo Zhu, Ke Yan, Yongsheng Zhu
{"title":"Dimensional discussion of traction force vector on ball/raceway interface and study of bearing dynamic behavior","authors":"Shuaijun Ma, Yanjing Yin, Linbo Zhu, Ke Yan, Yongsheng Zhu","doi":"10.1115/1.4062375","DOIUrl":null,"url":null,"abstract":"\n As a crucial component, rolling bearings directly determine the reliability of rotating equipment. However, current dynamic models for predicting the bearing performance either ignore the velocity and stress dispersion at the ball/raceway interface or fail to consider the spin moment generated within the interface. To address this issue, the discrete features of the velocity and stress distribution are considered in this paper, and the micro-element approach is used to construct formulas to obtain the traction vectors in two and three dimensions, respectively. Two bearing dynamic models are further developed for these two types of equations: one model considers the spin moment at the interface owing to unequal contact angles between the ball and the two raceways, while the other model ignores this moment. The reliability of these models is validated by comparison with experimental test results, including cage speed and oil film thickness. The predictions from the quasi-static model are used as theoretical values to compare the ability of the two models to simulate bearing performance under different operating conditions. The results show that the prediction results of the model considering the spin moment are closer to the theoretical values than those of the model ignoring this moment. However, the moment increases the friction at the ball/raceway interface, causing this model to underestimate the extent of bearing sliding.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062375","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a crucial component, rolling bearings directly determine the reliability of rotating equipment. However, current dynamic models for predicting the bearing performance either ignore the velocity and stress dispersion at the ball/raceway interface or fail to consider the spin moment generated within the interface. To address this issue, the discrete features of the velocity and stress distribution are considered in this paper, and the micro-element approach is used to construct formulas to obtain the traction vectors in two and three dimensions, respectively. Two bearing dynamic models are further developed for these two types of equations: one model considers the spin moment at the interface owing to unequal contact angles between the ball and the two raceways, while the other model ignores this moment. The reliability of these models is validated by comparison with experimental test results, including cage speed and oil film thickness. The predictions from the quasi-static model are used as theoretical values to compare the ability of the two models to simulate bearing performance under different operating conditions. The results show that the prediction results of the model considering the spin moment are closer to the theoretical values than those of the model ignoring this moment. However, the moment increases the friction at the ball/raceway interface, causing this model to underestimate the extent of bearing sliding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滚珠/滚道界面牵引力矢量的量纲讨论及轴承动态特性研究
滚动轴承作为一个关键部件,直接决定着旋转设备的可靠性。然而,目前用于预测轴承性能的动力学模型要么忽略了球/滚道界面处的速度和应力分散,要么没有考虑界面内产生的旋转力矩。为了解决这个问题,本文考虑了速度和应力分布的离散特征,并使用微元方法构造公式,分别获得二维和三维的牵引矢量。针对这两种类型的方程,进一步开发了两个轴承动力学模型:一个模型考虑了由于球和两个滚道之间的接触角不相等而导致的界面处的旋转力矩,而另一个模型忽略了该力矩。通过与包括保持架速度和油膜厚度在内的实验测试结果的比较,验证了这些模型的可靠性。准静态模型的预测被用作理论值,以比较两个模型在不同操作条件下模拟轴承性能的能力。结果表明,考虑自旋矩的模型预测结果比忽略自旋矩的预测结果更接近理论值。然而,力矩增加了滚珠/滚道界面处的摩擦力,导致该模型低估了轴承滑动的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Tribology-transactions of The Asme
Journal of Tribology-transactions of The Asme 工程技术-工程:机械
CiteScore
4.20
自引率
12.00%
发文量
117
审稿时长
4.1 months
期刊介绍: The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes. Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints
期刊最新文献
Experimental investigations on the development of hybrid metal matrix composite of Al7075 on microstructural, mechanical, and dry sliding aspects Structural optimization of the main bearing in a tunnel boring machine considering clearance Improved wear profile modelling of planetary roller screw mechanism with thread optimization Nano Magnesium silicate hydroxide as synergistic lubricant additive with micro carbon sphere for enhanced tribological properties Recent progress on the tribological applications of solid lubricants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1