Non-intrusive Speech Quality Assessment with a Multi-Task Learning based Subband Adaptive Attention Temporal Convolutional Neural Network

Xiaofeng Shu, Yanjie Chen, Chuxiang Shang, Yan Zhao, Chengshuai Zhao, Yehang Zhu, Chuanzeng Huang, Yuxuan Wang
{"title":"Non-intrusive Speech Quality Assessment with a Multi-Task Learning based Subband Adaptive Attention Temporal Convolutional Neural Network","authors":"Xiaofeng Shu, Yanjie Chen, Chuxiang Shang, Yan Zhao, Chengshuai Zhao, Yehang Zhu, Chuanzeng Huang, Yuxuan Wang","doi":"10.21437/interspeech.2022-10315","DOIUrl":null,"url":null,"abstract":"In terms of subjective evaluations, speech quality has been gen-erally described by a mean opinion score (MOS). In recent years, non-intrusive speech quality assessment shows an active progress by leveraging deep learning techniques. In this paper, we propose a new multi-task learning based model, termed as subband adaptive attention temporal convolutional neural network (SAA-TCN), to perform non-intrusive speech quality assessment with the help of MOS value interval detector (VID) auxiliary task. Instead of using fullband magnitude spectrogram, the proposed model takes subband magnitude spectrogram as the input to reduce model parameters and prevent overfitting. To effectively utilize the energy distribution information along the subband frequency dimension, subband adaptive attention (SAA) is employed to enhance the TCN model. Experimental results reveal that the proposed method achieves a superior performance on predicting the MOS values. In ConferencingSpeech 2022 Challenge, our method achieves a mean Pearson’s correlation coefficient (PCC) score of 0.763 and outperforms the challenge baseline method by 0.233.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"3298-3302"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In terms of subjective evaluations, speech quality has been gen-erally described by a mean opinion score (MOS). In recent years, non-intrusive speech quality assessment shows an active progress by leveraging deep learning techniques. In this paper, we propose a new multi-task learning based model, termed as subband adaptive attention temporal convolutional neural network (SAA-TCN), to perform non-intrusive speech quality assessment with the help of MOS value interval detector (VID) auxiliary task. Instead of using fullband magnitude spectrogram, the proposed model takes subband magnitude spectrogram as the input to reduce model parameters and prevent overfitting. To effectively utilize the energy distribution information along the subband frequency dimension, subband adaptive attention (SAA) is employed to enhance the TCN model. Experimental results reveal that the proposed method achieves a superior performance on predicting the MOS values. In ConferencingSpeech 2022 Challenge, our method achieves a mean Pearson’s correlation coefficient (PCC) score of 0.763 and outperforms the challenge baseline method by 0.233.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多任务学习的子带自适应注意时间卷积神经网络非侵入性语音质量评价
在主观评价方面,语音质量通常由平均意见得分(MOS)来描述。近年来,非侵入式语音质量评估通过利用深度学习技术取得了积极进展。在本文中,我们提出了一种新的基于多任务学习的模型,称为子带自适应注意力时间卷积神经网络(SAA-TCN),以在MOS值区间检测器(VID)辅助任务的帮助下进行非侵入性语音质量评估。该模型不使用全频带幅度谱图,而是以子带幅度谱图为输入,以减少模型参数并防止过度拟合。为了有效地利用子带频率维度上的能量分布信息,采用子带自适应注意力(SAA)来增强TCN模型。实验结果表明,该方法在预测MOS值方面具有良好的性能。在ConferencingSpeech 2022挑战赛中,我们的方法获得了0.763的平均皮尔逊相关系数(PCC)分数,并比挑战赛基线方法高0.233。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering Nasal Coda Loss in the Chengdu Dialect of Mandarin: Evidence from RT-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1