{"title":"Dynamics of a Parallel-kinematics Machine with Six Pairs of Offset Joints","authors":"Ha-si-ao-qi-er Han, J. Angeles","doi":"10.1115/1.4062984","DOIUrl":null,"url":null,"abstract":"\n The authors propose a systematic formulation of the dynamics of the 6-P-RR-R-RR parallel-kinematics machine (PKM) with offset RR-joints. The kinematics of the same system is reported in an accompanying paper. Based on the kinematics model developed in the former, the dynamics model of the limb-chain is derived using the Newton-Euler equations. Then, the constraint wrenches in the governing equations of the limb-chain are eliminated with the aid of the natural orthogonal complement (NOC). This is the twist-shaping matrix, which maps the joint-rate array of the limb-chain into the twist array of the PKM. Furthermore, the dynamics model of the whole PKM with offset joints is formulated. Moreover, the actuator forces are obtained. Finally, upon validation via simulation, the dynamics model is proven to be both precise and effective.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062984","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The authors propose a systematic formulation of the dynamics of the 6-P-RR-R-RR parallel-kinematics machine (PKM) with offset RR-joints. The kinematics of the same system is reported in an accompanying paper. Based on the kinematics model developed in the former, the dynamics model of the limb-chain is derived using the Newton-Euler equations. Then, the constraint wrenches in the governing equations of the limb-chain are eliminated with the aid of the natural orthogonal complement (NOC). This is the twist-shaping matrix, which maps the joint-rate array of the limb-chain into the twist array of the PKM. Furthermore, the dynamics model of the whole PKM with offset joints is formulated. Moreover, the actuator forces are obtained. Finally, upon validation via simulation, the dynamics model is proven to be both precise and effective.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.