Two-step simulation of piezoelectric properties of porous PZT according to porosity

IF 2.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Asian Ceramic Societies Pub Date : 2023-01-02 DOI:10.1080/21870764.2022.2159928
Il-Gok Hong, Ho-Yong Shin, Jong-Ho Kim, U. Paik, J. Im
{"title":"Two-step simulation of piezoelectric properties of porous PZT according to porosity","authors":"Il-Gok Hong, Ho-Yong Shin, Jong-Ho Kim, U. Paik, J. Im","doi":"10.1080/21870764.2022.2159928","DOIUrl":null,"url":null,"abstract":"ABSTRACT Porous piezoelectric materials have been widely used in hydrophone applications owing to their excellent hydrostatic charge constant (dh) and voltage constant (gh). However, owing to the difficulty in sample manufacturing, the evaluation of the overall piezoelectric properties for reliable device design using simulations is challenging. Herein, a two-step simulation was performed to accurately determine the overall properties of the porous PZT. First, the piezoelectric charge constant was calculated by displacement calculations using the electrostrictive effect. Second, using the calculated piezoelectric charge constant and impedance spectrum obtained from the experiment, the initial value for optimizing the properties was selected, and the overall properties were obtained using the parametric estimation technique. These parametric estimation simulation procedures were performed with the samples of radial and thickness modes based on the IEEE standards. Finally, the piezoelectric properties obtained were compared and verified with the experimental values. Therefore, the overall piezoelectric properties include mechanical, frequency and dielectric properties according to the porosity were obtained with reliable results.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"105 - 115"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2022.2159928","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Porous piezoelectric materials have been widely used in hydrophone applications owing to their excellent hydrostatic charge constant (dh) and voltage constant (gh). However, owing to the difficulty in sample manufacturing, the evaluation of the overall piezoelectric properties for reliable device design using simulations is challenging. Herein, a two-step simulation was performed to accurately determine the overall properties of the porous PZT. First, the piezoelectric charge constant was calculated by displacement calculations using the electrostrictive effect. Second, using the calculated piezoelectric charge constant and impedance spectrum obtained from the experiment, the initial value for optimizing the properties was selected, and the overall properties were obtained using the parametric estimation technique. These parametric estimation simulation procedures were performed with the samples of radial and thickness modes based on the IEEE standards. Finally, the piezoelectric properties obtained were compared and verified with the experimental values. Therefore, the overall piezoelectric properties include mechanical, frequency and dielectric properties according to the porosity were obtained with reliable results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于孔隙率的多孔PZT压电特性两步模拟
多孔压电材料以其优异的静水压电荷常数(dh)和电压常数(gh)在水听器中得到了广泛的应用。然而,由于样品制造的困难,使用模拟来评估可靠器件设计的整体压电特性是具有挑战性的。在此,进行了两步模拟,以准确地确定多孔PZT的整体性能。首先,利用电致伸缩效应通过位移计算来计算压电电荷常数。其次,利用实验获得的压电电荷常数和阻抗谱,选择了优化性能的初始值,并使用参数估计技术获得了整体性能。这些参数估计模拟程序是根据IEEE标准对径向和厚度模式的样本进行的。最后,将所得的压电性能与实验值进行了比较和验证。因此,根据孔隙率获得了包括机械性能、频率性能和介电性能在内的整体压电性能,结果可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Asian Ceramic Societies
Journal of Asian Ceramic Societies Materials Science-Ceramics and Composites
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
10 weeks
期刊介绍: The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.
期刊最新文献
Effect of yttrium oxide addition on the microstructure and mechanical properties of WC–ni composites fabricated from recycled WC and Ni Preparation of high-entropy nitride ceramics (TiVCrNbZr1-x)Ny by introducing nitrogen vacancies Synthesis, crystal structure and properties of YB2C2 In-situ formation of Zn-MOF coating on MgO/HA composite layer produced by plasma electrolytic oxidation on Mg-Sn-Mn-Ca alloy for orthopedic internal fixation devices Investigating the ultralow dielectric loss of spinel-like and modified orthorhombic perovskite ceramic structures for microwave applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1