Fixed Size Confidence Regions for the Parameters of the Mixed Effects Logistic Regression Model

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2019-04-26 DOI:10.1285/I20705948V12N1P1
T. Zoubeidi, M. Y. El-Bassiouni
{"title":"Fixed Size Confidence Regions for the Parameters of the Mixed Effects Logistic Regression Model","authors":"T. Zoubeidi, M. Y. El-Bassiouni","doi":"10.1285/I20705948V12N1P1","DOIUrl":null,"url":null,"abstract":"We develop fixed size confidence regions for estimating the fixed and random effects parameters of the mixed effects logistic regression model. This model applies to, among others, the study of the effects of covariates on a dichotomous response variable when subjects are sampled in clusters. Two sequential procedures are developed to estimate with a prescribed accuracy (confidence level) and fixed precision the set of fixed and random effects parameters and linear transformations of these parameters, respectively. We show that the two procedures are asymptotically consistent (i.e., the coverage probability converges to the nominal confidence level) and asymptotically efficient (i.e., the ratio of the expected random sample size to the unknown best fixed sample size converges to 1) as the width of the confidence region converges to 0. Suggestions to improve the performance of the procedures are provided based on Monte Carlo simulation and illustrated through a longitudinal clinical trial data.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"1-13"},"PeriodicalIF":0.6000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N1P1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N1P1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop fixed size confidence regions for estimating the fixed and random effects parameters of the mixed effects logistic regression model. This model applies to, among others, the study of the effects of covariates on a dichotomous response variable when subjects are sampled in clusters. Two sequential procedures are developed to estimate with a prescribed accuracy (confidence level) and fixed precision the set of fixed and random effects parameters and linear transformations of these parameters, respectively. We show that the two procedures are asymptotically consistent (i.e., the coverage probability converges to the nominal confidence level) and asymptotically efficient (i.e., the ratio of the expected random sample size to the unknown best fixed sample size converges to 1) as the width of the confidence region converges to 0. Suggestions to improve the performance of the procedures are provided based on Monte Carlo simulation and illustrated through a longitudinal clinical trial data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合效应Logistic回归模型参数的固定大小置信区域
我们开发了固定大小的置信区,用于估计混合效应逻辑回归模型的固定和随机效应参数。该模型适用于研究当受试者在集群中采样时,协变量对二分反应变量的影响。开发了两个顺序程序,分别以规定的精度(置信水平)和固定精度估计固定和随机效应参数集以及这些参数的线性变换。我们证明了当置信区的宽度收敛到0时,这两个过程是渐近一致的(即,覆盖概率收敛到标称置信水平)和渐近有效的(即预期随机样本量与未知最佳固定样本量的比率收敛到1)。基于蒙特卡罗模拟,提出了提高手术性能的建议,并通过纵向临床试验数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1