Prediction and verification of earthquakes induced by the Xiluodu hydropower station reservoir

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Earthquake Science Pub Date : 2022-10-01 DOI:10.1016/j.eqs.2022.10.006
Tinggai Chang , Baohua Li , Xinxiang Zeng
{"title":"Prediction and verification of earthquakes induced by the Xiluodu hydropower station reservoir","authors":"Tinggai Chang ,&nbsp;Baohua Li ,&nbsp;Xinxiang Zeng","doi":"10.1016/j.eqs.2022.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>Research has been conducted on reservoir-induced earthquakes in China since the Xinfengjiang reservoir-induced earthquakes in the 1960s. Regulations now require the risk of reservoir-induced earthquakes to be evaluated in the pre-research stage of all hydropower projects. Although nearly 40 cases of reservoir-induced earthquakes have been reported in China, analyses comparing the changes in seismic activity following reservoir impoundment with predictions are rare. In this study, we compared seismic activities observed in the reservoir area before and after the impoundment of the Xiluodu hydropower station in terms of the spatial distribution, frequency, and focal depths of the earthquakes, and clarified the correlation between their frequency/timing and reservoir level after impoundment. We then concluded that the seismic events in the head region were karst-type earthquakes, while those in the second segment of the reservoir were tectonic earthquakes. The spatial distribution of the earthquake epicenters and the seismic intensities validated some of the results for the reservoir-induced seismic risk assessment for the Xiluodu hydropower station, indicating that the proposed earthquake triggers and predictive models are reasonable. This study can provide a valuable reference for investigating the mechanism (s) of reservoir-induced earthquakes, revising reservoir-induced earthquake hazard assessment codes, and predicting the hazard zones of reservoir-induced seismicity under similar conditions.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451922003627/pdfft?md5=cc00f90cdad078cd8541d85ef35b2649&pid=1-s2.0-S1674451922003627-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451922003627","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Research has been conducted on reservoir-induced earthquakes in China since the Xinfengjiang reservoir-induced earthquakes in the 1960s. Regulations now require the risk of reservoir-induced earthquakes to be evaluated in the pre-research stage of all hydropower projects. Although nearly 40 cases of reservoir-induced earthquakes have been reported in China, analyses comparing the changes in seismic activity following reservoir impoundment with predictions are rare. In this study, we compared seismic activities observed in the reservoir area before and after the impoundment of the Xiluodu hydropower station in terms of the spatial distribution, frequency, and focal depths of the earthquakes, and clarified the correlation between their frequency/timing and reservoir level after impoundment. We then concluded that the seismic events in the head region were karst-type earthquakes, while those in the second segment of the reservoir were tectonic earthquakes. The spatial distribution of the earthquake epicenters and the seismic intensities validated some of the results for the reservoir-induced seismic risk assessment for the Xiluodu hydropower station, indicating that the proposed earthquake triggers and predictive models are reasonable. This study can provide a valuable reference for investigating the mechanism (s) of reservoir-induced earthquakes, revising reservoir-induced earthquake hazard assessment codes, and predicting the hazard zones of reservoir-induced seismicity under similar conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溪洛渡水电站水库诱发地震预测与验证
自20世纪60年代新丰江水库诱发地震以来,中国开展了水库诱发地震研究。现在的法规要求在所有水电项目的前期研究阶段对水库诱发地震的风险进行评估。尽管中国已经报道了近40起水库引发的地震,但将水库蓄水后地震活动变化与预测相比较的分析却很少。本文通过对溪洛渡水电站蓄水前后库区地震活动的空间分布、频率和震源深度的对比研究,明确了其频率/时间与蓄水后库区水位的相关性。据此推断,首段为岩溶型地震,第二段为构造型地震。地震震中和地震烈度的空间分布验证了溪洛渡水电站水库诱发地震危险性评价的部分结果,表明所提出的地震触发点和预测模型是合理的。该研究可为研究水库诱发地震机理、修订水库诱发地震危险性评价规范、预测相似条件下水库诱发地震活动危险区提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
期刊最新文献
Structural similarity of lithospheric velocity models of Chinese mainland Assessing the effects of model parameter assumptions on surface-wave inversion results Evaluation of crustal deformation and associated strong motions induced by the 2022 Paktika earthquake, Afghanistan Mechanisms to explain soil liquefaction triggering, development, and persistence during an earthquake An illustrated guide to: Parsimonious multi-scale full-waveform inversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1