Yanzhong Yu, Han Huang, Shunda Lin, Yongxi Zeng, Musheng Chen, Qiwen Zhan
{"title":"A 3D controllable diffraction-limited spot array generated by means of a spaced-dipole array","authors":"Yanzhong Yu, Han Huang, Shunda Lin, Yongxi Zeng, Musheng Chen, Qiwen Zhan","doi":"10.1049/ote2.12055","DOIUrl":null,"url":null,"abstract":"<p>The creation of an array of three-dimensional (3D) multifocal spots in the focal region has attracted interest due to potential applications in parallel or simultaneous process areas. Based on the theory of pattern synthesis of antenna array and the electromagnetic time reversal technique, an optimisation-free approach is reported to construct a 3D controllable diffraction-limited spot array in the focal volume of a 4pi focussing system formed by two high-numerical-aperture (NA) objectives. The proposed method can be implemented readily by inversely focussing the field radiated from a virtual spaced-dipole antenna array mounted at the focus of the 4pi configuration. By solving the inverse problem, the required illumination in the pupil plane for producing the 3D spot array can be found. It is demonstrated that the 3D diffraction-limited focal spot array owns the properties of controllable polarisation, scheduled number, tunable location, and adjustable interval. This array may find applications in 3D simultaneous optical manipulation and trapping, 3D parallel fabrication, 3D optical data storage, and so on.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"16 2","pages":"47-55"},"PeriodicalIF":2.3000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12055","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12055","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
The creation of an array of three-dimensional (3D) multifocal spots in the focal region has attracted interest due to potential applications in parallel or simultaneous process areas. Based on the theory of pattern synthesis of antenna array and the electromagnetic time reversal technique, an optimisation-free approach is reported to construct a 3D controllable diffraction-limited spot array in the focal volume of a 4pi focussing system formed by two high-numerical-aperture (NA) objectives. The proposed method can be implemented readily by inversely focussing the field radiated from a virtual spaced-dipole antenna array mounted at the focus of the 4pi configuration. By solving the inverse problem, the required illumination in the pupil plane for producing the 3D spot array can be found. It is demonstrated that the 3D diffraction-limited focal spot array owns the properties of controllable polarisation, scheduled number, tunable location, and adjustable interval. This array may find applications in 3D simultaneous optical manipulation and trapping, 3D parallel fabrication, 3D optical data storage, and so on.
期刊介绍:
IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays.
Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues.
IET Optoelectronics covers but is not limited to the following topics:
Optical and optoelectronic materials
Light sources, including LEDs, lasers and devices for lighting
Optical modulation and multiplexing
Optical fibres, cables and connectors
Optical amplifiers
Photodetectors and optical receivers
Photonic integrated circuits
Nanophotonics and photonic crystals
Optical signal processing
Holography
Displays