Generalized Poisson distributions for systems with two-particle interactions

M. Hameeda, A. Plastino, Maria Cossu Rocca
{"title":"Generalized Poisson distributions for systems with two-particle interactions","authors":"M. Hameeda, A. Plastino, Maria Cossu Rocca","doi":"10.1088/2633-1357/abec9f","DOIUrl":null,"url":null,"abstract":"In a cosmological context, observational best fits for galaxies’ distributions in the Universe have been tackled by recourse to different distribution functions. We provide here arguments favoring the formulation of a rather general distribution function (DF), of Poisson origin, describing galaxy clustering. The DF should be useful irrespective of distances or temperatures. We will be discussing distribution function for gravitational interactions.","PeriodicalId":93771,"journal":{"name":"IOP SciNotes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP SciNotes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-1357/abec9f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In a cosmological context, observational best fits for galaxies’ distributions in the Universe have been tackled by recourse to different distribution functions. We provide here arguments favoring the formulation of a rather general distribution function (DF), of Poisson origin, describing galaxy clustering. The DF should be useful irrespective of distances or temperatures. We will be discussing distribution function for gravitational interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双粒子相互作用系统的广义泊松分布
在宇宙学的背景下,星系在宇宙中分布的观测最佳拟合已经通过不同的分布函数来解决。我们在这里提供了支持泊松起源的相当一般的分布函数(DF)的公式的论点,描述星系团。无论距离或温度如何,测向都应该是有用的。我们将讨论引力相互作用的分布函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Morphology exploration of pollen using deep learning latent space The infection and recovery periods of the 2022 outbreak of monkey-pox virus disease Generated datasets from dynamic reproduction of projectiles in ballistic environments for advanced research (DROPBEAR) testbed Genome analysis of a plastisphere-associated Oceanimonas sp. NSJ1 sequenced on Nanopore MinION platform Prediction of malignant transformation in oral epithelial dysplasia using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1